DOI QR코드

DOI QR Code

Flatness Characteristics Analysis Technique of Attenuator Using Thermal Voltage Converter and AC Measurement Standard

열전압변환기와 교류측정표준을 사용한 감쇠기 평탄도 특성 분석 기법

  • Cha, Yun-bae (Department of Weapon Systems Engineering, Pukyong National University) ;
  • Kim, Boo-il (Department of Electrical, Electronics and Software Engineering, Pukyong National University)
  • Received : 2017.12.11
  • Accepted : 2017.12.27
  • Published : 2018.02.28

Abstract

This paper proposes a technique to analyze the flatness characteristics of the attenuator at 10Hz to $50\text\tiny{MHz}$ on the basis of $1\text\tiny{kHz}$ using a Thermal Voltage Converter and AC measurement standard. In the proposed technique, the input voltage of the attenuator for each measuring frequency is supplied at the same rate as $1\text\tiny{kHz}$ using TVC, and the flatness characteristics of the attenuator are analyzed by the voltage variation indicated in the AC measurement standard. The results of the analysis of the attenuator flatness characteristics show that the maximum uncertainty of $866{\mu}V/V$ can be measured from $10\text\tiny{dB}$ to $70\text\tiny{dB}$ and the uncertainty is reduced by about 37% compared to $2.31\text\tiny{mV}$/V using the network measurement method. The improved attenuator flatness characteristic values can be applied to the frequency flatness calibration from 2.2V to 2.2mV at the low voltage of the AC measurement standard.

본 논문은 열전압변환기와 교류측정표준을 사용하여 10Hz에서 50MHz 대역의 감쇠기 평탄도 특성을 1kHz를 기준으로 분석하는 기법을 제안하였다. 제안된 기법은 TVC를 사용하여 측정 주파수별 감쇠기의 입력전압을 1kHz와 동일하게 공급한 후, 교류측정표준에서 지시되는 전압 변화량으로 감쇠기의 평탄도 특성분석을 수행하였다. 감쇠기 평탄도 특성분석의 결과는 1dB에서 70dB까지 최대 $866{\mu}V/V$의 불확도로 측정이 가능하며, 기존 회로망 측정방법을 사용한 2.31mV/V 보다 약 37%의 불확도가 감소된 것을 확인하였다. 향상된 감쇠기 평탄도 특성 값은 교류측정표준의 저전압 2.2V에서 2.2mV까지 주파수 평탄도 교정에 적용할 수 있다.

Keywords

References

  1. G. junwel, T. Zhiguo, H. Biao, and Z. Hui, "Research summarizes in traceability methods of low voltage ac-dc transfer standard," in Proceedings of the 12th IEEE International Conference on Electronic Measurement & Instruments, pp. 903-906, 2015
  2. N. M. Oldham and R. M. Henderson, "Low-voltage standards in the dc to 1MHz frequency range," IEEE Transactions on Instrumentation and Measurement, vol. 40, pp. 368-372, April 1991. https://doi.org/10.1109/TIM.1990.1032962
  3. U. H. Park and G. C. Ahn, "A ${\pi}$-type variable attenuator and low phase shift," Journal of the Korea Institute of Information and Communication Engineering, vol. 13, no. 10, pp. 2066-2070, Oct. 2009.
  4. H. Fujiki and Y. Amagai, "Low-voltage ac-dc transfer standards at NMIJ," in Proceedings of the Precision Electromagnetic Measurements, Ottawa, pp. 1-2, July 2016.
  5. Fluke Corporation, 5790B Service Manual, 2016
  6. I. Budovsky, "A micropotentiometer-based system for low-voltage calibration of alternating voltage measurement standard," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 2, pp. 356-360, April 1997. https://doi.org/10.1109/19.571855
  7. N. Faulkner, "A new method for the calibration of the mV ranges of an AC Measurement Standard," in Proceedings of the NCSL International Workshop & Symposium, Utah, pp. 1-16, 2004.
  8. P. C. A. Roberts and M. V. Ashcroft, "Achieving and improving level and attenuation uncertainties calibration," in Proceedings of the NCSL International Workshop & Symposium, pp. 1-12, 2011.
  9. Technical Manual, Air Force Metrology and Calibration Program, US AFMC, 2017.
  10. Technical Manual, Evaluation of Measurement of Uncertainty in Calibration, EA-4/02, European Co-operation for Accreditation, 2013
  11. S. Joe, "Impact of VSWR on uncertainty analysis of harmonics for a scope calibrator instrument," in proceedings of the NCSL Workshop & Symposium, pp. 663-670, 2002.
  12. Y. Amagai, M. Maruyama, and H. Fujiki, "Low-frequency characterization in thermal converters using ACprogrammable Josephson Voltage Standard System," IEEE Transactions on Instrumentation and Measurement, vol. 40, pp. 1621-1626, June 2013.