References
- Babu, D., Leclercq, G., Goossens, V., Remijsen, Q., Vandenabeele, P., Motterlini, R. and Lefebvre, R. A. (2015) Antioxidant potential of CORM-A1 and resveratrol during TNF-alpha/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicol. Appl. Pharmacol. 288, 161-178.
- Basuroy, S., Leffler, C. W. and Parfenova, H. (2013) CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am. J. Physiol. Cell Physiol. 304, C1105-C1115. https://doi.org/10.1152/ajpcell.00023.2013
- Blandini, F., Armentero, M. T. and Martignoni, E. (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat. Disord. 14, S124-S129. https://doi.org/10.1016/j.parkreldis.2008.04.015
- Caumartin, Y., Stephen, J., Deng, J. P., Lian, D., Lan, Z., Liu, W., Garcia, B., Jevnikar, A. M., Wang, H., Cepinskas, G. and Luke, P. P. (2011) Carbon monoxide-releasing molecules protect against ischemia-reperfusion injury during kidney transplantation. Kidney Int. 79, 1080-1089. https://doi.org/10.1038/ki.2010.542
- Chapman, J. T., Otterbein, L. E., Elias, J. A. and Choi, A. M. (2001) Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L209-L216. https://doi.org/10.1152/ajplung.2001.281.1.L209
- Chi, P. L., Lin, C. C., Chen, Y. W., Hsiao, L. D. and Yang, C. M. (2015) CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol. Neurobiol. 52, 277-292. https://doi.org/10.1007/s12035-014-8869-4
- Choi, Y. K. (2017) Role of carbon monoxide in neurovascular repair processing. Biomol. Ther. (Seoul) doi: 10.4062/biomolther.2017.144 [Epub ahead of print].
- Christie, A. E., Fontanilla, T. M., Roncalli, V., Cieslak, M. C. and Lenz, P. H. (2014) Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen. Comp. Endocrinol. 202, 76-86.
- Fledderus, J. O. and Goldschmeding, R. (2013) Nrf2 implicated as a novel therapeutic target for renal regeneration after acute kidney injury. Nephrol. Dial. Transplant. 28, 1969-1971. https://doi.org/10.1093/ndt/gft202
- Ghattas, M. H., Chuang, L. T., Kappas, A. and Abraham, N. G. (2002) Protective effect of HO-1 against oxidative stress in human hepatoma cell line (HepG2) is independent of telomerase enzyme activity. Int. J. Biochem. Cell Biol. 34, 1619-1628. https://doi.org/10.1016/S1357-2725(02)00097-3
- Halliwell, B. (2006) Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x
- Herman, Z. S. (1997) Carbon monoxide: a novel neural messenger or putative neurotransmitter? Pol. J. Pharmacol. 49, 1-4.
- Hettiarachchi, N., Dallas, M., Al-Owais, M., Griffiths, H., Hooper, N., Scragg, J., Boyle, J. and Peers, C. (2014) Heme oxygenase-1 protects against Alzheimer's amyloid-beta(1-42)-induced toxicity via carbon monoxide production. Cell Death Dis. 5, e1569. https://doi.org/10.1038/cddis.2014.529
- Innamorato, N. G., Rojo, A. I., Garcia-Yague, A. J., Yamamoto, M., de Ceballos, M. L. and Cuadrado, A. (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181, 680-689. https://doi.org/10.4049/jimmunol.181.1.680
- Jamal Uddin, M., Joe, Y., Kim, S.-K., Jeong, S. O., Ryter, S. W., Pae, H.-O. and Chung, H. T. (2016) IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell. Mol. Immunol. 13, 170-179. https://doi.org/10.1038/cmi.2015.02
- Joshi, G. and Johnson, J. A. (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat. CNS Drug Discov. 7, 218-229.
- Kaizaki, A., Tanaka, S., Ishige, K., Numazawa, S. and Yoshida, T. (2006) The neuroprotective effect of heme oxygenase (HO) on oxidative stress in HO-1 siRNA-transfected HT22 cells. Brain Res. 1108, 39-44. https://doi.org/10.1016/j.brainres.2006.06.011
- Kalia, L. V. and Lang, A. E. (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol. 12, 65-66. https://doi.org/10.1038/nrneurol.2015.249
- Kikuchi, A., Takeda, A., Onodera, H., Kimpara, T., Hisanaga, K., Sato, N., Nunomura, A., Castellani, R. J., Perry, G., Smith, M. A. and Itoyama, Y. (2002) Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiol. Dis. 9, 244-248. https://doi.org/10.1006/nbdi.2002.0466
- Kim, D. S., Chae, S. W., Kim, H. R. and Chae, H. J. (2009) CO and bilirubin inhibit doxorubicin-induced cardiac cell death. Immunopharmacol. Immunotoxicol. 31, 64-70.
- Lian, S., Xia, Y., Ung, T. T., Khoi, P. N., Yoon, H. J., Kim, N. H., Kim, K. K. and Jung, Y. D. (2016) Carbon monoxide releasing molecule-2 ameliorates IL-1beta-induced IL-8 in human gastric cancer cells. Toxicology 361-362, 24-38. https://doi.org/10.1016/j.tox.2016.07.003
- Magierowski, M., Magierowska, K., Szmyd, J., Surmiak, M., Sliwowski, Z., Kwiecien, S. and Brzozowski, T. (2016) Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig. Dis. Sci. 61, 3176-3189. https://doi.org/10.1007/s10620-016-4280-5
- McCoole, M. D., D'Andrea, B. T., Baer, K. N. and Christie, A. E. (2012) Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex. Comp. Biochem. Physiol. Part D Genomics Proteomics 7, 124-160. https://doi.org/10.1016/j.cbd.2012.01.001
- Michiels, C., Raes, M., Toussaint, O. and Remacle, J. (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17, 235-248. https://doi.org/10.1016/0891-5849(94)90079-5
- Mizuguchi, S., Capretta, A., Suehiro, S., Nishiyama, N., Luke, P., Potter, R. F., Fraser, D. D. and Cepinskas, G. (2010) Carbon monoxide-releasing molecule CORM-3 suppresses vascular endothelial cell SOD-1/SOD-2 activity while up-regulating the cell surface levels of SOD-3 in a heparin-dependent manner. Free Radic. Biol. Med. 49, 1534-1541. https://doi.org/10.1016/j.freeradbiomed.2010.08.017
- Onyiah, J. C., Sheikh, S. Z., Maharshak, N., Steinbach, E. C., Russo, S. M., Kobayashi, T., Mackey, L. C., Hansen, J. J., Moeser, A. J., Rawls, J. F., Borst, L. B., Otterbein, L. E. and Plevy, S. E. (2013) Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 144, 789-798. https://doi.org/10.1053/j.gastro.2012.12.025
- Pietrus, M., Paprota, P., Radziszewska, R., Huras, H., Ludwin, A., Wiechec, M., Nocun, A., Ossowski, P., Knafel, A., Kialka, M., Klyszejko-Molska, J., Pitynski, K., Zalustowicz, A. and Banas, T. (2015) Carbon monoxide poisoning in pregnant woman. Przegl Lek 72, 482-484.
- Qin, S., Du, R., Yin, S., Liu, X., Xu, G. and Cao, W. (2015) Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation. Inflamm. Res. 64, 537-548.
- Ruvolo, P. P., Deng, X., Carr, B. K. and May, W. S. (1998) A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273, 25436-25442. https://doi.org/10.1074/jbc.273.39.25436
- Schipper, H. M. (1999) Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotox. Res. 1, 57-70. https://doi.org/10.1007/BF03033339
- Schipper, H. M., Liberman, A. and Stopa, E. G. (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Exp. Neurol. 150, 60-68. https://doi.org/10.1006/exnr.1997.6752
- Shiraga, H., Pfeiffer, R. F. and Ebadi, M. (1993) The effects of 6-hydroxydopamine and oxidative stress on the level of brain metallothionein. Neurochem. Int. 23, 561-566. https://doi.org/10.1016/0197-0186(93)90104-D
- Soni, H., Pandya, G., Patel, P., Acharya, A., Jain, M. and Mehta, A. A. (2011) Beneficial effects of carbon monoxide-releasing molecule-2 (CORM-2) on acute doxorubicin cardiotoxicity in mice: role of oxidative stress and apoptosis. Toxicol. Appl. Pharmacol. 253, 70-80. https://doi.org/10.1016/j.taap.2011.03.013
- Suliman, H. B., Carraway, M. S., Ali, A. S., Reynolds, C. M., Welty-Wolf, K. E. and Piantadosi, C. A. (2007) The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J. Clin. Invest. 117, 3730-3741.
- Tenhunen, R., Marver, H. S. and Schmid, R. (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. U.S.A. 61, 748-755. https://doi.org/10.1073/pnas.61.2.748
- Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381-384.
- Wegiel, B., Gallo, D., Csizmadia, E., Harris, C., Belcher, J., Vercellotti, G. M., Penacho, N., Seth, P., Sukhatme, V., Ahmed, A., Pandolfi, P. P., Helczynski, L., Bjartell, A., Persson, J. L. and Otterbein, L. E. (2013) Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 73, 7009-7021. https://doi.org/10.1158/0008-5472.CAN-13-1075
- Wei, Y., Chen, P., de Bruyn, M., Zhang, W., Bremer, E. and Helfrich, W. (2010) Carbon monoxide-releasing molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterol. 10, 42. https://doi.org/10.1186/1471-230X-10-42
-
Xie, Z., Han, P., Cui, Z., Wang, B., Zhong, Z., Sun, Y., Yang, G., Sun, Q. and Bian, L. (2016) Pretreatment of mouse neural stem cells with carbon monoxide-releasing molecule-2 interferes with NF-
${\kappa}B$ p65 signaling and suppresses iron overload-induced apoptosis. Cell. Mol. Neurobiol. 36, 1343-1351. https://doi.org/10.1007/s10571-016-0333-8 - Yang, Y. C., Huang, Y. T., Hsieh, C. W., Yang, P. M. and Wung, B. S. (2014) Carbon monoxide induces heme oxygenase-1 to modulate STAT3 activation in endothelial cells via S-glutathionylation. PLoS ONE 9, e100677. https://doi.org/10.1371/journal.pone.0100677
- Yao, L., Wang, P., Chen, M., Liu, Y., Zhou, L., Fang, X. and Huang, Z. (2015) Carbon monoxide-releasing molecules attenuate postresuscitation myocardial injury and protect cardiac mitochondrial function by reducing the production of mitochondrial reactive oxygen species in a rat model of cardiac arrest. J. Cardiovasc. Pharmacol. Ther. 20, 330-341. https://doi.org/10.1177/1074248414559837
- Zhou, S., Ye, W., Shao, Q., Zhang, M. and Liang, J. (2013) Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol. Hematol. 88, 706-715. https://doi.org/10.1016/j.critrevonc.2013.09.001
Cited by
- Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells vol.51, pp.4, 2019, https://doi.org/10.1038/s12276-019-0238-y
- Protective effect of hydralazine on a cellular model of Parkinson’s disease: a possible role of hypoxia-inducible factor (HIF)-1α vol.98, pp.3, 2018, https://doi.org/10.1139/bcb-2019-0117
- DNA damage and antioxidant properties of CORM-2 in normal and cancer cells vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-68948-6
- Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson’s Disease vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.757161