DOI QR코드

DOI QR Code

Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats

  • Yang, Dong Kwon (Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Biosafety Research Institute and Korea Zoonosis Research Institute, Center for Poultry Diseases Control, Chonbuk National University) ;
  • Kang, Hyung-Sub (Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Biosafety Research Institute and Korea Zoonosis Research Institute, Center for Poultry Diseases Control, Chonbuk National University)
  • Received : 2017.12.22
  • Accepted : 2018.01.09
  • Published : 2018.03.01

Abstract

Quercetin and resveratrol are known to have beneficial effects on the diabetes and diabetic complication, however, the effects of combined treatment of these compounds on diabetes are not fully revealed. Therefore, the present study was designed to investigate the combined antidiabetic action of quercetin (QE) and resveratrol (RS) in streptozotocin (STZ)-induced diabetic rats. To test the effects of co-treated with these compounds on diabetes, serum glucose, insulin, lipid profiles, oxidative stress biomarkers, and ions were determined. Additionally, the activities of hepatic glucose metabolic enzymes and histological analyses of pancreatic tissues were evaluated. 50 male Sprague-Dawley rats were divided into five groups; normal control, 50 mg/kg STZ-induced diabetic, and three (30 mg/kg QE, 10 mg/kg RS, and combined) compound-treated diabetic groups. The elevated serum blood glucose levels, insulin levels, and dyslipidemia in diabetic rats were significantly improved by QE, RS, and combined treatments. Oxidative stress and tissue injury biomarkers were dramatically inhibited by these compounds. They also shown to improve the hematological parameters which were shown to the hyperlactatemia and ketoacidosis as main causes of diabetic complications. The compounds treatment maintained the activities of hepatic glucose metabolic enzymes and structure of pancreatic ${\beta}-cells$ from the diabetes, and it is noteworthy that cotreatment with QE and RS showed the most preventive effect on the diabetic rats. Therefore, our study suggests that cotreatment with QE and RS has beneficial effects against diabetes. We further suggest that cotreatment with QE and RS has the potential for use as an alternative therapeutic strategy for diabetes.

Keywords

References

  1. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62-S69. https://doi.org/10.2337/dc10-S062
  2. Arias, N., Macarulla, M. T., Aguirre, L., Milton, I. and Portillo, M. P. (2016) The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur. J. Nutr. 55, 341-348.
  3. Baquer, N. Z., Cascales, M., McLean, P. and Greenbaum, A. L. (1976) Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat. Eur. J. Biochem. 68, 403-413. https://doi.org/10.1111/j.1432-1033.1976.tb10827.x
  4. Ceriello, A. (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1-7. https://doi.org/10.2337/diabetes.54.1.1
  5. Cersosimo, E., Solis-Herrera, C., Trautmann, M. E., Malloy, J. and Triplitt, C. L. (2014) Assessment of pancreatic beta-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10, 2-42. https://doi.org/10.2174/1573399810666140214093600
  6. Chen, S., Jiang H., Wu, X. and Fang, J. (2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016, 9340637.
  7. Del Follo-Martinez, A., Banerjee, N., Li, X., Safe, S. and Mertens-Talcott, S. (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer 65, 494-504. https://doi.org/10.1080/01635581.2012.725194
  8. ElAttar, T. M. and Virji, A. S. (1999) Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation. Anticancer Drugs 10, 187-193. https://doi.org/10.1097/00001813-199902000-00007
  9. Friedewald, W. T., Levy, R. I. and Fredrickson, D. S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
  10. Go, H. K., Rahman, M. M., Kim, G. B., Na, C. S., Song, C. H., Kim, J. S., Kim, S. J. and Kang, H. S. (2015) Antidiabetic effects of yam (dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes. Nutrients 7, 8532-8544. https://doi.org/10.3390/nu7105411
  11. Gumaa, K. A. and McLean, P. (1972) The kinetic quantitation of ATP: D-glucose 6-phosphotransferases. FEBS Lett. 27, 293-297. https://doi.org/10.1016/0014-5793(72)80644-6
  12. Gupta, D., Raju, J., Prakash, J. and Baquer, N. Z. (1999) Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate. Diabetes Res. Clin. Pract. 46, 1-7. https://doi.org/10.1016/S0168-8227(99)00067-4
  13. Igura, K., Ohta, T., Kuroda, Y. and Kaji, K. (2001) Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 171, 11-16.
  14. Kulkarni, C. R., Joglekar, M. M., Patil, S. B. and Arvindekar, A. U. (2012) Antihyperglycemic and antihyperlipidemic effect of Santalum album in streptozotocin induced diabetic rats. Pharm. Biol. 50, 360-365. https://doi.org/10.3109/13880209.2011.604677
  15. Kurukulasuriya, R., Link, J. T., Madar, D. J., Pei, Z., Rohde, J. J., Richards, S. J., Souers, A. J. and Szczepankiewicz, B. G. (2003) Prospects for pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. 10, 99-121. https://doi.org/10.2174/0929867033368547
  16. Machha, A., Achike, F. I., Mustafa, A. M. and Mustafa, M. R. (2007) Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 16, 442-447.
  17. McLellan, A. C., Thornalley, P. J., Benn, J. and Sonksen, P. H. (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.) 87, 21-29.
  18. Oshaghi, E. A., Goodarzi, M. T., Higgins, V. and Adeli, K. (2017) Role of resveratrol in the management of insulin resistance and related conditions: mechanism of action. Crit. Rev. Clin. Lab. Sci. 54, 267-293. https://doi.org/10.1080/10408363.2017.1343274
  19. Palsamy, P. and Subramanian, S. (2009) Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol. Interact. 179, 356-362. https://doi.org/10.1016/j.cbi.2008.11.008
  20. Palsamy, P. and Subramanian, S. (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim. Biophys. Acta 1812, 719-731. https://doi.org/10.1016/j.bbadis.2011.03.008
  21. Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M. and Angielski, S. (2011) High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J. Cell. Biochem. 112, 1661-1672.
  22. Rahman, M. M., Lee, S. J., Mun, A. R., Adam, G. O., Park, R. M., Kim, G. B., Kang, H. S., Kim, J. S., Kim, S. J. and Kim, S. Z. (2014) Relationships between blood Mg2+ and energy metabolites/enzymes after acute exhaustive swimming exercise in rats. Biol. Trace Elem. Res. 161, 85-90. https://doi.org/10.1007/s12011-014-9983-x
  23. Ramesh, B. and Pugalendi, K. V. (2006) Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J. Med. Food 9, 562-566. https://doi.org/10.1089/jmf.2006.9.562
  24. Rolo, A. P. and Palmeira, C. M. (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167-178. https://doi.org/10.1016/j.taap.2006.01.003
  25. Roslan, J., Giribabu, N., Karim, K. and Salleh, N. (2017) Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed. Pharmacother. 86, 570-582. https://doi.org/10.1016/j.biopha.2016.12.044
  26. Saisho, Y., Kou, K., Tanaka, K., Abe, T., Kurosawa, H., Shimada, A., Meguro, S., Kawai, T. and Itoh, H. (2011) Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr. J. 58, 315-322. https://doi.org/10.1507/endocrj.K10E-399
  27. Su, H. C., Hung, L. M. and Chen, J. K. (2006) Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 290, E1339-E1346. https://doi.org/10.1152/ajpendo.00487.2005
  28. Szkudelski, T. and Szkudelska, K. (2011) Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci. 1215, 34-39. https://doi.org/10.1111/j.1749-6632.2010.05844.x
  29. Tahrani, A. A., Piya, M. K., Kennedy, A. and Barnett, A. H. (2010) Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol. Ther. 125, 328-361. https://doi.org/10.1016/j.pharmthera.2009.11.001
  30. Vessal, M., Hemmati, M. and Vasei, M. (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135C, 357-364.
  31. Vidal-Puig, A. and O'Rahilly, S. (2001) Metabolism. Controlling the glucose factory. Nature 413, 125-126. https://doi.org/10.1038/35093198
  32. Wang, G. G., Lu, X. H., Li, W., Zhao, X. and Zhang, C. (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based. Complement. Alternat. Med. 2011, 323171.
  33. West, I. C. (2000) Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x
  34. Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047-1053. https://doi.org/10.2337/diacare.27.5.1047
  35. Wilson, J. F. (2010) In clinic. Diabetic ketoacidosis. Ann. Intern. Med. 152, ITC1-1, ITC1-2, ITC1-3,ITC1-4, ITC1-5, ITC1-6, ITC1-7, ITC1-8, ITC1-9, ITC1-10, ITC1-11, ITC1-12, ITC1-13, ITC1-14, ITC1-15, table of contents; quiz ITC1-16.
  36. Yim, S., Malhotra, A. and Veves, A. (2007) Antioxidants and CVD in diabetes: where do we stand now? Curr. Diab. Rep. 7, 8-13. https://doi.org/10.1007/s11892-007-0003-9
  37. Yonamine, C. Y., Pinheiro-Machado, E., Michalani, M. L., Freitas, H. S., Okamoto, M. M., Correa-Giannella, M. L. and Machado, U. F. (2016) Resveratrol improves glycemic control in insulin-treated diabetic rats: participation of the hepatic territory. Nutr. Metab. (Lond.) 13, 44.
  38. Zak, B., Epstein, E. and Baginski, E. S. (1977) Determination of liver microsomal glucose-6-phosphatase. Ann. Clin. Lab. Sci. 7, 169-177.
  39. Zamin, L. L., Filippi-Chiela, E. C., Dillenburg-Pilla, P., Horn, F., Salbego, C. and Lenz, G. (2009) Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci. 100, 1655-1662. https://doi.org/10.1111/j.1349-7006.2009.01215.x
  40. Zhou, B., Zou, H. and Xu, G. (2016) Clinical utility of serum cystatin c in predicting diabetic nephropathy among patients with diabetes mellitus: a meta-analysis. Kidney Blood Press. Res. 41, 919-928. https://doi.org/10.1159/000452593
  41. Zhou, M., Wang, S., Zhao, A., Wang, K., Fan, Z., Yang, H., Liao, W., Bao, S., Zhao, L., Zhang, Y., Yang, Y., Qiu, Y., Xie, G., Li, H. and Jia, W. (2012) Transcriptomic and metabonomic profiling reveal synergistic effects of quercetin and resveratrol supplementation in high fat diet fed mice. J. Proteome Res. 11, 4961-4971. https://doi.org/10.1021/pr3004826

Cited by

  1. pp.01458884, 2018, https://doi.org/10.1111/jfbc.12627
  2. Ethanolic extracts of Pluchea indica (L.) leaf pretreatment attenuates cytokine-induced β-cell apoptosis in multiple low-dose streptozotocin-induced diabetic mice vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0212133
  3. Impacts of resveratrol versus platelet-rich plasma for treatment of experimentally lithium-induced thyroid follicular cell toxicity in rats. A histological and immunohistochemical study vol.43, pp.1, 2018, https://doi.org/10.1080/01913123.2019.1593270
  4. Sulfuretin Prevents Obesity and Metabolic Diseases in Diet Induced Obese Mice vol.27, pp.1, 2019, https://doi.org/10.4062/biomolther.2018.090
  5. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats vol.365, pp.None, 2018, https://doi.org/10.1016/j.taap.2018.12.011
  6. Aqueous leaf extract of Clinacanthus nutans improved metabolic indices and sorbitol‐related complications in type II diabetic rats (T2D) vol.7, pp.4, 2018, https://doi.org/10.1002/fsn3.988
  7. Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds vol.25, pp.15, 2018, https://doi.org/10.2174/1381612825666190705191000
  8. Pharmacological properties of Rheum turkestanicum Janisch vol.5, pp.6, 2018, https://doi.org/10.1016/j.heliyon.2019.e01986
  9. Screening of Inhibitory Effects of Polyphenols on Akt-Phosphorylation in Endothelial Cells and Determination of Structure-Activity Features vol.9, pp.6, 2018, https://doi.org/10.3390/biom9060219
  10. Development and Validation of an LC-MS/MS Method for Simultaneous Determination of Canagliflozin and Metformin HCl in Rat Plasma and its Application vol.16, pp.6, 2020, https://doi.org/10.2174/1573412915666190312161823
  11. The Potential of Anti-Diabetic Rākau Rongoā (Māori Herbal Medicine) to Treat Type 2 Diabetes Mellitus (T2DM) Mate Huka: A Review vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.00935
  12. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular vol.44, pp.2, 2018, https://doi.org/10.1111/jfbc.13127
  13. Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.071
  14. The role of apoptosis and autophagy in the insulin-enhancing activity of oxovanadium(IV) bipyridine complex in streptozotocin-induced diabetic mice vol.33, pp.2, 2018, https://doi.org/10.1007/s10534-020-00237-1
  15. Osteomeles schwerinae Extract and Its Major Compounds Inhibit Methylglyoxal-Induced Apoptosis in Human Retinal Pigment Epithelial Cells vol.25, pp.11, 2018, https://doi.org/10.3390/molecules25112605
  16. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage-gated K + channels vol.20, pp.1, 2020, https://doi.org/10.3892/etm.2020.8670
  17. Minieditorial: Quercetina Melhora o Perfil Lipídico e Apolipoproteico em Ratos Tratados com Glicocorticoides em Altas Doses vol.115, pp.1, 2018, https://doi.org/10.36660/abc.20200461
  18. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System vol.25, pp.15, 2018, https://doi.org/10.3390/molecules25153322
  19. Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence vol.21, pp.17, 2018, https://doi.org/10.3390/ijms21176448
  20. C-peptide corrects hepatocellular dysfunction in a rat model of type 1 diabetes vol.76, pp.3, 2018, https://doi.org/10.1007/s13105-020-00748-y
  21. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-71971-2
  22. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4393266
  23. The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6678662
  24. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota vol.13, pp.1, 2018, https://doi.org/10.3390/nu13010206
  25. Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature vol.69, pp.1, 2018, https://doi.org/10.1021/acs.jafc.0c06335
  26. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products vol.26, pp.8, 2018, https://doi.org/10.3390/molecules26082179
  27. Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment vol.13, pp.7, 2018, https://doi.org/10.3390/pharmaceutics13071098
  28. Hypoglycaemic and hypolipidemic activities of Alhagi camelorum in streptozotocin-induced diabetes in Wistar rats vol.127, pp.4, 2018, https://doi.org/10.1080/13813455.2019.1635623
  29. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus vol.14, pp.8, 2018, https://doi.org/10.3390/ph14080806
  30. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin vol.16, pp.22, 2018, https://doi.org/10.2217/nnm-2021-0070
  31. Quercetin and metabolic syndrome: A review vol.35, pp.10, 2021, https://doi.org/10.1002/ptr.7144
  32. Decrypting molecular mechanism insight of Phyllanthus emblica L. fruit in the treatment of type 2 diabetes mellitus by network pharmacology vol.1, pp.4, 2018, https://doi.org/10.1016/j.phyplu.2021.100144
  33. Cellgevity® attenuates liver distruption, oxidative stress and inflammation in STZ-diabetic male rats vol.14, pp.None, 2018, https://doi.org/10.1016/j.sciaf.2021.e01055
  34. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches vol.144, pp.None, 2018, https://doi.org/10.1016/j.biopha.2021.112336
  35. Quercetin‑conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-87687-w
  36. The potential therapeutic effects of Trifolium alexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis vol.352, pp.None, 2018, https://doi.org/10.1016/j.cbi.2021.109781