References
- American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62-S69. https://doi.org/10.2337/dc10-S062
- Arias, N., Macarulla, M. T., Aguirre, L., Milton, I. and Portillo, M. P. (2016) The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur. J. Nutr. 55, 341-348.
- Baquer, N. Z., Cascales, M., McLean, P. and Greenbaum, A. L. (1976) Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat. Eur. J. Biochem. 68, 403-413. https://doi.org/10.1111/j.1432-1033.1976.tb10827.x
- Ceriello, A. (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1-7. https://doi.org/10.2337/diabetes.54.1.1
- Cersosimo, E., Solis-Herrera, C., Trautmann, M. E., Malloy, J. and Triplitt, C. L. (2014) Assessment of pancreatic beta-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10, 2-42. https://doi.org/10.2174/1573399810666140214093600
- Chen, S., Jiang H., Wu, X. and Fang, J. (2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016, 9340637.
- Del Follo-Martinez, A., Banerjee, N., Li, X., Safe, S. and Mertens-Talcott, S. (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer 65, 494-504. https://doi.org/10.1080/01635581.2012.725194
- ElAttar, T. M. and Virji, A. S. (1999) Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation. Anticancer Drugs 10, 187-193. https://doi.org/10.1097/00001813-199902000-00007
- Friedewald, W. T., Levy, R. I. and Fredrickson, D. S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
- Go, H. K., Rahman, M. M., Kim, G. B., Na, C. S., Song, C. H., Kim, J. S., Kim, S. J. and Kang, H. S. (2015) Antidiabetic effects of yam (dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes. Nutrients 7, 8532-8544. https://doi.org/10.3390/nu7105411
- Gumaa, K. A. and McLean, P. (1972) The kinetic quantitation of ATP: D-glucose 6-phosphotransferases. FEBS Lett. 27, 293-297. https://doi.org/10.1016/0014-5793(72)80644-6
- Gupta, D., Raju, J., Prakash, J. and Baquer, N. Z. (1999) Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate. Diabetes Res. Clin. Pract. 46, 1-7. https://doi.org/10.1016/S0168-8227(99)00067-4
- Igura, K., Ohta, T., Kuroda, Y. and Kaji, K. (2001) Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 171, 11-16.
- Kulkarni, C. R., Joglekar, M. M., Patil, S. B. and Arvindekar, A. U. (2012) Antihyperglycemic and antihyperlipidemic effect of Santalum album in streptozotocin induced diabetic rats. Pharm. Biol. 50, 360-365. https://doi.org/10.3109/13880209.2011.604677
- Kurukulasuriya, R., Link, J. T., Madar, D. J., Pei, Z., Rohde, J. J., Richards, S. J., Souers, A. J. and Szczepankiewicz, B. G. (2003) Prospects for pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. 10, 99-121. https://doi.org/10.2174/0929867033368547
- Machha, A., Achike, F. I., Mustafa, A. M. and Mustafa, M. R. (2007) Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 16, 442-447.
- McLellan, A. C., Thornalley, P. J., Benn, J. and Sonksen, P. H. (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.) 87, 21-29.
- Oshaghi, E. A., Goodarzi, M. T., Higgins, V. and Adeli, K. (2017) Role of resveratrol in the management of insulin resistance and related conditions: mechanism of action. Crit. Rev. Clin. Lab. Sci. 54, 267-293. https://doi.org/10.1080/10408363.2017.1343274
- Palsamy, P. and Subramanian, S. (2009) Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol. Interact. 179, 356-362. https://doi.org/10.1016/j.cbi.2008.11.008
- Palsamy, P. and Subramanian, S. (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim. Biophys. Acta 1812, 719-731. https://doi.org/10.1016/j.bbadis.2011.03.008
- Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M. and Angielski, S. (2011) High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J. Cell. Biochem. 112, 1661-1672.
- Rahman, M. M., Lee, S. J., Mun, A. R., Adam, G. O., Park, R. M., Kim, G. B., Kang, H. S., Kim, J. S., Kim, S. J. and Kim, S. Z. (2014) Relationships between blood Mg2+ and energy metabolites/enzymes after acute exhaustive swimming exercise in rats. Biol. Trace Elem. Res. 161, 85-90. https://doi.org/10.1007/s12011-014-9983-x
- Ramesh, B. and Pugalendi, K. V. (2006) Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J. Med. Food 9, 562-566. https://doi.org/10.1089/jmf.2006.9.562
- Rolo, A. P. and Palmeira, C. M. (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167-178. https://doi.org/10.1016/j.taap.2006.01.003
- Roslan, J., Giribabu, N., Karim, K. and Salleh, N. (2017) Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed. Pharmacother. 86, 570-582. https://doi.org/10.1016/j.biopha.2016.12.044
- Saisho, Y., Kou, K., Tanaka, K., Abe, T., Kurosawa, H., Shimada, A., Meguro, S., Kawai, T. and Itoh, H. (2011) Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr. J. 58, 315-322. https://doi.org/10.1507/endocrj.K10E-399
- Su, H. C., Hung, L. M. and Chen, J. K. (2006) Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 290, E1339-E1346. https://doi.org/10.1152/ajpendo.00487.2005
- Szkudelski, T. and Szkudelska, K. (2011) Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci. 1215, 34-39. https://doi.org/10.1111/j.1749-6632.2010.05844.x
- Tahrani, A. A., Piya, M. K., Kennedy, A. and Barnett, A. H. (2010) Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol. Ther. 125, 328-361. https://doi.org/10.1016/j.pharmthera.2009.11.001
- Vessal, M., Hemmati, M. and Vasei, M. (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135C, 357-364.
- Vidal-Puig, A. and O'Rahilly, S. (2001) Metabolism. Controlling the glucose factory. Nature 413, 125-126. https://doi.org/10.1038/35093198
- Wang, G. G., Lu, X. H., Li, W., Zhao, X. and Zhang, C. (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based. Complement. Alternat. Med. 2011, 323171.
- West, I. C. (2000) Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x
- Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047-1053. https://doi.org/10.2337/diacare.27.5.1047
- Wilson, J. F. (2010) In clinic. Diabetic ketoacidosis. Ann. Intern. Med. 152, ITC1-1, ITC1-2, ITC1-3,ITC1-4, ITC1-5, ITC1-6, ITC1-7, ITC1-8, ITC1-9, ITC1-10, ITC1-11, ITC1-12, ITC1-13, ITC1-14, ITC1-15, table of contents; quiz ITC1-16.
- Yim, S., Malhotra, A. and Veves, A. (2007) Antioxidants and CVD in diabetes: where do we stand now? Curr. Diab. Rep. 7, 8-13. https://doi.org/10.1007/s11892-007-0003-9
- Yonamine, C. Y., Pinheiro-Machado, E., Michalani, M. L., Freitas, H. S., Okamoto, M. M., Correa-Giannella, M. L. and Machado, U. F. (2016) Resveratrol improves glycemic control in insulin-treated diabetic rats: participation of the hepatic territory. Nutr. Metab. (Lond.) 13, 44.
- Zak, B., Epstein, E. and Baginski, E. S. (1977) Determination of liver microsomal glucose-6-phosphatase. Ann. Clin. Lab. Sci. 7, 169-177.
- Zamin, L. L., Filippi-Chiela, E. C., Dillenburg-Pilla, P., Horn, F., Salbego, C. and Lenz, G. (2009) Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci. 100, 1655-1662. https://doi.org/10.1111/j.1349-7006.2009.01215.x
- Zhou, B., Zou, H. and Xu, G. (2016) Clinical utility of serum cystatin c in predicting diabetic nephropathy among patients with diabetes mellitus: a meta-analysis. Kidney Blood Press. Res. 41, 919-928. https://doi.org/10.1159/000452593
- Zhou, M., Wang, S., Zhao, A., Wang, K., Fan, Z., Yang, H., Liao, W., Bao, S., Zhao, L., Zhang, Y., Yang, Y., Qiu, Y., Xie, G., Li, H. and Jia, W. (2012) Transcriptomic and metabonomic profiling reveal synergistic effects of quercetin and resveratrol supplementation in high fat diet fed mice. J. Proteome Res. 11, 4961-4971. https://doi.org/10.1021/pr3004826
Cited by
- pp.01458884, 2018, https://doi.org/10.1111/jfbc.12627
- Ethanolic extracts of Pluchea indica (L.) leaf pretreatment attenuates cytokine-induced β-cell apoptosis in multiple low-dose streptozotocin-induced diabetic mice vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0212133
- Impacts of resveratrol versus platelet-rich plasma for treatment of experimentally lithium-induced thyroid follicular cell toxicity in rats. A histological and immunohistochemical study vol.43, pp.1, 2018, https://doi.org/10.1080/01913123.2019.1593270
- Sulfuretin Prevents Obesity and Metabolic Diseases in Diet Induced Obese Mice vol.27, pp.1, 2019, https://doi.org/10.4062/biomolther.2018.090
- Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats vol.365, pp.None, 2018, https://doi.org/10.1016/j.taap.2018.12.011
- Aqueous leaf extract of Clinacanthus nutans improved metabolic indices and sorbitol‐related complications in type II diabetic rats (T2D) vol.7, pp.4, 2018, https://doi.org/10.1002/fsn3.988
- Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds vol.25, pp.15, 2018, https://doi.org/10.2174/1381612825666190705191000
- Pharmacological properties of Rheum turkestanicum Janisch vol.5, pp.6, 2018, https://doi.org/10.1016/j.heliyon.2019.e01986
- Screening of Inhibitory Effects of Polyphenols on Akt-Phosphorylation in Endothelial Cells and Determination of Structure-Activity Features vol.9, pp.6, 2018, https://doi.org/10.3390/biom9060219
- Development and Validation of an LC-MS/MS Method for Simultaneous Determination of Canagliflozin and Metformin HCl in Rat Plasma and its Application vol.16, pp.6, 2020, https://doi.org/10.2174/1573412915666190312161823
- The Potential of Anti-Diabetic Rākau Rongoā (Māori Herbal Medicine) to Treat Type 2 Diabetes Mellitus (T2DM) Mate Huka: A Review vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.00935
- Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular vol.44, pp.2, 2018, https://doi.org/10.1111/jfbc.13127
- Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.071
- The role of apoptosis and autophagy in the insulin-enhancing activity of oxovanadium(IV) bipyridine complex in streptozotocin-induced diabetic mice vol.33, pp.2, 2018, https://doi.org/10.1007/s10534-020-00237-1
- Osteomeles schwerinae Extract and Its Major Compounds Inhibit Methylglyoxal-Induced Apoptosis in Human Retinal Pigment Epithelial Cells vol.25, pp.11, 2018, https://doi.org/10.3390/molecules25112605
- Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage-gated K + channels vol.20, pp.1, 2020, https://doi.org/10.3892/etm.2020.8670
- Minieditorial: Quercetina Melhora o Perfil Lipídico e Apolipoproteico em Ratos Tratados com Glicocorticoides em Altas Doses vol.115, pp.1, 2018, https://doi.org/10.36660/abc.20200461
- Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System vol.25, pp.15, 2018, https://doi.org/10.3390/molecules25153322
- Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence vol.21, pp.17, 2018, https://doi.org/10.3390/ijms21176448
- C-peptide corrects hepatocellular dysfunction in a rat model of type 1 diabetes vol.76, pp.3, 2018, https://doi.org/10.1007/s13105-020-00748-y
- Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-71971-2
- Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4393266
- The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6678662
- Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota vol.13, pp.1, 2018, https://doi.org/10.3390/nu13010206
- Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature vol.69, pp.1, 2018, https://doi.org/10.1021/acs.jafc.0c06335
- Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products vol.26, pp.8, 2018, https://doi.org/10.3390/molecules26082179
- Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment vol.13, pp.7, 2018, https://doi.org/10.3390/pharmaceutics13071098
- Hypoglycaemic and hypolipidemic activities of Alhagi camelorum in streptozotocin-induced diabetes in Wistar rats vol.127, pp.4, 2018, https://doi.org/10.1080/13813455.2019.1635623
- Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus vol.14, pp.8, 2018, https://doi.org/10.3390/ph14080806
- Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin vol.16, pp.22, 2018, https://doi.org/10.2217/nnm-2021-0070
- Quercetin and metabolic syndrome: A review vol.35, pp.10, 2021, https://doi.org/10.1002/ptr.7144
- Decrypting molecular mechanism insight of Phyllanthus emblica L. fruit in the treatment of type 2 diabetes mellitus by network pharmacology vol.1, pp.4, 2018, https://doi.org/10.1016/j.phyplu.2021.100144
- Cellgevity® attenuates liver distruption, oxidative stress and inflammation in STZ-diabetic male rats vol.14, pp.None, 2018, https://doi.org/10.1016/j.sciaf.2021.e01055
- Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches vol.144, pp.None, 2018, https://doi.org/10.1016/j.biopha.2021.112336
- Quercetin‑conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-87687-w
- The potential therapeutic effects of Trifolium alexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis vol.352, pp.None, 2018, https://doi.org/10.1016/j.cbi.2021.109781