References
- Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2012), "The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study", Comput. Electron. Agric., 88, 32-43. https://doi.org/10.1016/j.compag.2012.06.007
- Al-Abri, M. and Hilal, N. (2008), "Artificial neural network simulation of combined humic substance coagulation and membrane filtration", Chem. Eng. J., 141(1-3), 27-34. https://doi.org/10.1016/j.cej.2007.10.005
- Aydiner, C., Demir, I. and Yildiz E. (2005), "Modeling of flux decline in crossflow microfiltration using neural networks: The case of phosphate removal", J. Membr. Sci., 248(1-2), 53-62. https://doi.org/10.1016/j.memsci.2004.07.036
- Bayar, S., Demir, I. and Engin, GO. (2009), "Modeling leaching behavior of solidified wastes using back-propagation neural networks", Ecotoxicol. Environ. Saf., 72(3), 843-850. https://doi.org/10.1016/j.ecoenv.2007.10.019
- Bayat, H., Neyshaburi, M.R., Mohammadi, K., Nariman-Zadeh, N., Irannejad, M. and Gregory, AS. (2013), "Combination of artificial neural networks and fractal theory to predict soil water retention curve", Comput. Electron. Agric., 92, 92-103. https://doi.org/10.1016/j.compag.2013.01.005
- Bowen, W.R. and Jenner, F. (1995), "Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review", Adv. Colloid Interfac. Sci., 56, 141-200. https://doi.org/10.1016/0001-8686(94)00232-2
- Cancino-Madariaga, B. and Aguirre, J. (2011), "Combination treatment of corn starch wastewater by sedimentation, microfiltration and reverse osmosis", Desalination, 279(1-3), 285-90. https://doi.org/10.1016/j.desal.2011.06.021
- Chellam, S. (2005), "Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions", J. Membr. Sci., 258(1-2), 35-42. https://doi.org/10.1016/j.memsci.2004.11.038
- Demuth, H. and Beale, M. (1998), Neural Network Toolbox for Use with MATLAB, TheMathWorks Inc., Massachusetts, U.S.A.
- Demuth, H. and Beale, M. (2004), Neural Network Toolbox for Use with MATLAB (Version 4.0), The MathWorks, Inc., Massachusetts, U.S.A.
- Dornier, M., Decloux, M., Trystram, G. and Lebert, A. (1995), "Dynamic modeling of crossflow microfiltration using neural networks", J. Membr. Sci., 98(3), 263-73. https://doi.org/10.1016/0376-7388(94)00195-5
- Garson, GD. (1991), "Interpreting neural-network connection weights", AI Expert, 6(4), 46-51.
- Ghafari-Nazari, A. and Mozafari, M. (2012), "Simulation of structural features on mechanochemical synthesis of Al2O3-TiB2 nanocomposite by optimized artificial neural network", Adv. Powder Technol., 23(2), 220-227. https://doi.org/10.1016/j.apt.2011.02.011
- Ghandehari, S., Montazer-Rahmati, M.M. and Asghari, M. (2011), "A comparison between semi-theoretical and empirical modeling of cross-flow microfiltration using ANN", Desalination, 277(1-3), 348-355. https://doi.org/10.1016/j.desal.2011.04.057
- Hermia, J. (1985), Blocking Filtration. Application to Non-Newtonian Fluids, in Mathematical Models and Design Methods in Solid-Liquid Separation, Springer, Dordrecht, The Netherlands.
- Jokic, A., Zavargo, Z., Seres, Z. and Tekic, M. (2010), "The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach", J. Membr. Sci., 350, 269-278. https://doi.org/10.1016/j.memsci.2009.12.037
- Krstic, DM.,Tekic, MN., Caric, MD. and Milanovic, S.D. (2004), "Static turbulence promoter in cross-flow microfiltration of skim milk", Desalination, 163, 297-309. https://doi.org/10.1016/S0011-9164(04)90203-2
- Liu, Y., He, G., Tan, M., Nie, F. and Li, B. (2014), "Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions", Desalination, 338, 57-64. https://doi.org/10.1016/j.desal.2014.01.015
- Nourbakhsh, H., Emam-Djomeh, Z., Omid, M., Mirsaeedghazi, H. and Moini, S. (2014), "Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM", Comput. Electron. Agric., 102, 1-9. https://doi.org/10.1016/j.compag.2013.12.017
- Popovic, S., Jovicevic, D., Muhadinovic, M., Milanovic, S. and Tekic, M.N. (2013), "Intensification of microfiltration using a blade-type turbulence promoter", J. Membr. Sci., 425, 113-120.
- Porrazzo, R., Cipollina, A., Galluzzo, M. and Micale, G. (2013), "A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit", Comput. Chem. Eng., 54, 79-96. https://doi.org/10.1016/j.compchemeng.2013.03.015
- Saghatoleslami, N., Vatankhah, GH., Karimi, H. and Noie, S.H. (2011), "Prediction of the overall sieve tray efficiency for a group of hydrocarbons, an artificial neural network approach", J. Nat. Gas Sci. Eng., 3(1), 319-25. https://doi.org/10.1016/j.jngse.2011.01.002
- Saranovic, Z., Seres, Z., Jokic, A., Pajin, B., Dokic, Lj., Gyura, J., Dalmacija, B. and Simovic, D.S. (2011), "Reduction of solid content in starch industry wastewater by microfiltration", Starch Starke, 63(2), 64-74. https://doi.org/10.1002/star.201000077
- Tanaka, T., Kamimura, R., Fujiwara, R. and Nakanishi, K. (1994), "Crossflow filtration of yeast cultivated in molasses", Biotechnol. Bioeng., 43(11), 1094-1101. https://doi.org/10.1002/bit.260431113
Cited by
- Dynamic Modeling Using Artificial Neural Network of Bacillus Velezensis Broth Cross-Flow Microfiltration Enhanced by Air-Sparging and Turbulence Promoter vol.10, pp.12, 2018, https://doi.org/10.3390/membranes10120372