DOI QR코드

DOI QR Code

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu (School of Urban Rail Transportation, Soochow University) ;
  • Tang, Qiang (School of Urban Rail Transportation, Soochow University) ;
  • Chen, Su (School of Urban Rail Transportation, Soochow University) ;
  • Gu, Fan (National Center for Asphalt Technology, Auburn University) ;
  • Li, Zhenze (Canadian Nuclear Safety Commission)
  • Received : 2017.04.24
  • Accepted : 2017.07.10
  • Published : 2018.03.25

Abstract

Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China

References

  1. Ahmady-Asbchin, S., Andres, Y., Gerente, C. and Cloirec, P.L. (2008), "Biosorption of Cu(II) from aqueous solution by fucus serratus: Surface characterization and sorption mechanisms", Bioresour. Technol., 99(14), 6150-6155. https://doi.org/10.1016/j.biortech.2007.12.040
  2. Akar, T., Tunali, S. and Kiran, I. (2005), "Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions", Biochem. Eng. J., 25(3), 227-235. https://doi.org/10.1016/j.bej.2005.05.006
  3. Aksu, Z. and Isoglu, I.A. (2005), "Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp", Proc. Biochem., 40, 3031-3044. https://doi.org/10.1016/j.procbio.2005.02.004
  4. Anbia, M., Kargosha, K. and Khoshbooei, S. (2015), "Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48", Chem. Eng. Res. Des., 93, 779-788. https://doi.org/10.1016/j.cherd.2014.07.018
  5. Bulgariu, L., Ratoi, M., Bulgariu, D. and Macoveanu, M. (2009), "The sorption of lead(II) ions from aqueous solutions on peat: Kinetics study", Environ. Eng. Manage. J., 8(2), 289-295.
  6. Carson, B.L., Ellis, H.V. and Mccann, J.L. (1987), "Toxicology and biological monitoring of metals in humans", Quarter. Rev. Biol., 62(4), 259.
  7. Casabo, J., Izquierdo, M., Ribas, J. and Diaz, C. (1983), "Copper(II) complexes with derivatives of 8-Aminoquinoline", Trans. Met. Chem., 8(2), 110-113. https://doi.org/10.1007/BF01036092
  8. EU (2014), European Drinking Water Directive, European Commission, European Union, .
  9. Faghihian, H. and Rasekh, M. (2014), "Removal of chromate from aqueous solution by a novel clinoptilolite-polyanillin composite", Iran. J. Chem. Chem. Eng., 33(1), 45-51.
  10. Fan, H.J., Shu, H.Y., Yang, H.S. and Chen, W.C. (2006), "Characteristics of landfill leachates in central Taiwan", Sci. Total Environ., 361(1-3), 25-37. https://doi.org/10.1016/j.scitotenv.2005.09.033
  11. Fang, X.F., Li, J.S., Li, X., Pan, S.L., Zhang, X., Sun, X.Y., Shen, J.Y., Han, W.Q. and Wang, L.J. (2017), "Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal", Chem. Eng. J., 314, 38-49. https://doi.org/10.1016/j.cej.2016.12.125
  12. Figueroa-Torres, G.M., Certucha-Barragan, M.T., Acedo-Felix, E., Monge-Amaya, O., Almendariz-Tapia, F.J. and Gasca-Estefania, L.A. (2016), "Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite", J. Taiwan Inst. Chem. Eng., 61, 241-246. https://doi.org/10.1016/j.jtice.2015.12.018
  13. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. and Serarols, J. (2006), "Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste", Sep. Purif. Technol., 50(1), 132-140. https://doi.org/10.1016/j.seppur.2005.11.016
  14. Gao, Y., Gu, F., and Zhao, Y. (2013), "Thermal oxidative aging characterization of SBS modified asphalt", J. Wuhan Univ. Technol. Mater. Sci., 28(1), 88-91. https://doi.org/10.1007/s11595-013-0646-0
  15. Gavrilescu, M. (2004), "Removal of heavy metals from the environment by biosorption", Eng. Life Sci., 4(3), 219-232. https://doi.org/10.1002/elsc.200420026
  16. Gavrilescu, M., Pavel, L.V. and Cretescu, I. (2009), "Characterization and remediation of soils contaminated with uranium", J. Hazard. Mater., 163(2-3), 475-510. https://doi.org/10.1016/j.jhazmat.2008.07.103
  17. Ghaemi, N., Madaeni, S.S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., Heydari, R., Beygzadeh, M. and Ghouzivand, S. (2015), "Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized $Fe_3O_4$ nanoparticles", Chem. Eng. J., 263, 101-112. https://doi.org/10.1016/j.cej.2014.10.103
  18. Gulnaz, O. and Saygideger, S.E. (2005), "Study of Cu(II) biosorption by dried activated sludge: Effect of physicochemical environment and kinetics study", J. Hazard. Mater., 120(1-3), 193-200. https://doi.org/10.1016/j.jhazmat.2005.01.003
  19. Helfferich, F. (1962), Ion Exchange, McGraw-Hill, New York, U.S.A.
  20. Jackson, K.D. (1997), "A guide to identifying common inorganic fillers and activators using vibrational spectroscopy", J. Rubber Res., 12(2), 102-111.
  21. Jin, Z., Akiyama, T., Chung, B.Y., Matsumoto, Y., Iiyama, K. and Watanabe, S. (2003), "Changes in lignin content of leaf litters during mulching", Phytochem., 64(5), 1023-1031. https://doi.org/10.1016/S0031-9422(03)00423-0
  22. Jones, R.A. and Pyrrole Studies, I. (1963), "The infrared spectra of 2-monosubstituted pyrroles", Austr. J. Chem., 16(1), 93-100. https://doi.org/10.1071/CH9630093
  23. Kicsi, A., Bilba, D. and Macoveanu, M. (2010), "Equilibrium and kinetic modeling of Zn (II) sorption from aqueous solutions by sphagnum moss peat", Environ. Eng. Manage. J., 9(3), 341-349.
  24. Kilic, M., Keskin, M.E., Mazlum, S. and Mazlum, N. (2008), "Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism", J. Min. Proc., 87(1-2), 1-8. https://doi.org/10.1016/j.minpro.2008.01.001
  25. Kim, J. and Bruggen, B.V.D. (2010), "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut., 158(7), 2335-2349. https://doi.org/10.1016/j.envpol.2010.03.024
  26. Kovalchuk, O., Titov, V., Hohn, B. and Kovalchuk, L. (2001), "A sensitive transgenic plant system to detect toxic inorganic compounds in the environment", Nat., 19(6), 568-572.
  27. Kumar, P.S., Abhinaya, R.V., Arthi, V., Lashmi, K.G., Priyadharshini, M. and Sivanesan, S. (2014), "Adsorption of methylene blue dye onto surface modified cashew nut shell", Environ. Eng. Manage. J., 13(3), 545-556.
  28. Li, Z.Z., Tang, X.W., Chen, Y.M. and Wang, Y. (2009), "Activation of Firmiana simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies", J. Hazard. Mater., 169(1-3), 386-394. https://doi.org/10.1016/j.jhazmat.2009.03.108
  29. Lin, L., Liu, G.G., Lv, W.Y., Yao, K., Lin, Q.T. and Zhang, Y. (2013), "Removal of chelated copper by $TiO_2$ photocatalysis: Synergetic mechanism between Cu (II) and organic ligands", Iran. J. Chem. Chem. Eng., 32(1), 103-112.
  30. Low, K.S., Lee, C.K. and Leo, A.C. (1995), "Removal of metals from electroplating wastes using banana pith", Bioresour. Technol., 51(2-3), 227-231. https://doi.org/10.1016/0960-8524(94)00123-I
  31. Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008), "Characterization of the biosorption of cadmium, lead and copper with the brown alga fucus vesiculosus", J. Hazard. Mater., 158(2-3), 316-323. https://doi.org/10.1016/j.jhazmat.2008.01.084
  32. Ministry of Health, Labour and Welfare (2014), Regulations of Drinking Water, Ministry of Health, Labour and Welfare, Japan, .
  33. Mondal, P.K., Ahmad, R. and Kumar, R. (2014), "Adsorptive removal of hazardous methylene blue by fruit shell of cocos nucifera", Environ. Eng. Manage. J., 13(2), 231-240.
  34. Mukherjee, R., Bhunia, P. and De, S. (2016), "Impact of graphene oxide on removal of heavy metals using mixed matrix membrane", Chem. Eng. J., 292, 284-297. https://doi.org/10.1016/j.cej.2016.02.015
  35. Naiya, T.K., Bhattacharya, A.K., Mandal, S. and Das, S.K. (2009), "The sorption of lead(II) ions on rice husk ash", J. Hazard. Mater., 163(2-3), 1254-1264. https://doi.org/10.1016/j.jhazmat.2008.07.119
  36. Nemes, L. and Bulgariu, L. (2016), "Optimization of process parameters for heavy metals biosorption onto mustard waste biomass", Open Chem., 14(1), 175-187. https://doi.org/10.1515/chem-2016-0019
  37. NHMRC (2011), Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, Australia, 7-5.
  38. Qi, B.C. and Aldrich, C. (2008), "Biosorption of heavy metals from aqueous solutions with tobacco dust", Bioresour. Technol., 99(13), 5595-5601. https://doi.org/10.1016/j.biortech.2007.10.042
  39. Redlich, O. and Peterson, D.L.A. (1959), "Useful adsorption isotherm", J. Phys. Chem., 63(6), 1024-1026. https://doi.org/10.1021/j150576a611
  40. Repelin, Y., Husson, E., Abello, L. and Lucazeau, G. (1985), "Structural study of gels of $V_2O_5$: Normal coordinate analysis", Spectrochimica Acta Part A Molecul. Spectroscop., 41(8), 993-1003. https://doi.org/10.1016/0584-8539(85)80063-5
  41. Saeed, A., Akhtar, M.W. and Iqbal, M. (2005), "Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent", Sep. Purif. Technol., 45(1), 25-31. https://doi.org/10.1016/j.seppur.2005.02.004
  42. Sangi, M.R., Shahmoradi, A., Zolgharnein, J., Azimi, G.H. and Ghorbandoost, M. (2008), "Removal and recovery of heavy metals from aqueous solution using ulmus carpinifolia and fraxinus excelsior tree leaves", J. Hazard. Mater., 155(3), 513-522. https://doi.org/10.1016/j.jhazmat.2007.11.110
  43. Singer, D.M., Johnson, S.B., Catalano, J.G., Farges, F. and Brown Jr., G.E.B. (2009), "Sequestration of sr(ii) by calcium oxalate-a batch uptake study and exafs analysis of model compounds and reaction products", Geochimica Cosmochimica Acta, 72(20), 5055-5069. https://doi.org/10.1016/j.gca.2008.07.020
  44. Sinitsya, A., CopiKovA, J., Prutyanov, V., Skoblya, S. and Machovic, V. (2000), "Amidation of highly methoxylated citrus pectin with primary amines", Carbohyd. Polym., 42(4), 359. https://doi.org/10.1016/S0144-8617(99)00184-8
  45. Sips, R. (1948), "On the structure of a catalyst surface", J. Chem. Phys., 16(5), 490-495. https://doi.org/10.1063/1.1746922
  46. Somya, A., Rafiquee, M. and Varshney, K.G. (2009), "Synthesis, characterization and analytical applications of sodium dodecyl sulphate cerium (iv) phosphate: A new pb (ii) selective, surfactant-based intercalated fibrous ion exchanger", Colloid. Surface. A Physicochem. Eng. Asp., 336(1), 142-146. https://doi.org/10.1016/j.colsurfa.2008.11.036
  47. Suteu, D., Zaharia, C., Muresan, A., Muresan, R. and Popescu, A. (2009), "Using of industrial waste materials for textile wastewater treatment", Environ. Eng. Manage. J., 8(5), 1097-1102.
  48. Tang, Q., Chu, J.M., Wang, Y., Zhou, T. and Liu, Y. (2016a), "Characteristics and factors influencing Pb(II) desorption from a Chinese clay by citric acid", Sep. Sci. Technol., 51(17), 2734-2743. https://doi.org/10.1080/01496395.2016.1216128
  49. Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2015a), "Membrane behavior of bentonite-amended compacted clay towards Zn(II) and Pb(II)", Membr. Water Treat., 6(5), 393-409. https://doi.org/10.12989/mwt.2015.6.5.393
  50. Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2015b), "Influence of pH on the membrane behavior of bentonite amended Fukakusa clay", Sep. Purif. Technol., 141, 132-142. https://doi.org/10.1016/j.seppur.2014.11.035
  51. Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2014), "Membrane behavior of bentonite-amended compacted clay", Soil. Found., 54(3), 329-344. https://doi.org/10.1016/j.sandf.2014.04.019
  52. Tang, Q., Tang, X.W., Hu, M.M., Li, Z.Z., Chen, Y.M. and Lou, P. (2010), "Removal of Cd(II) from aqueous solution with activated firmiana simplex leaf: Behaviors and affecting factors", J. Hazard. Mater., 179(1-3), 95-103. https://doi.org/10.1016/j.jhazmat.2010.02.062
  53. Tang, Q., Tang, X.W., Li, Z.Z., Chen, Y.M., Kou, N.Y. and Sun, Z.F. (2009), "Adsorption and desorption behaviour of Pb(II) on a natural kaolin: Equilibrium, kinetic and thermodynamic studies", J. Chem. Technol. Biotechnol., 84(9), 1371-1380. https://doi.org/10.1002/jctb.2192
  54. Tang, Q., Tang, X.W., Li, Z.Z., Wang, Y., Hu, M.M., Zhang, X.J. and Chen, Y.M. (2012), "Zn(II) removal with activated firmiana simplex leaf: Kinetics and equilibrium studies", J. Environ. Eng., 138(2), 190-199. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000471
  55. Tang, Q., Wang, H.Y., Tang, X.W. and Wang, Y. (2016b), "Removal of aqueous Ni(II) with carbonized leaf powder: Kinetics and equilibrium", J. Centr. South Univ., 23(4), 778-786. https://doi.org/10.1007/s11771-016-3123-z
  56. Unuabonah, E.I., Adebowale, K.O. and Olu-Owolabi, B.I. (2007), "Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay", J. Hazard. Mater., 144(1-2), 386-395. https://doi.org/10.1016/j.jhazmat.2006.10.046
  57. USEPA, National Primary Drinking Water Regulations, EPA 816-F-09-0004, May 2009.
  58. Uslu, G. and Tanyol, M. (2006), "Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature", J. Hazard. Mater., 135(1-3), 87-93. https://doi.org/10.1016/j.jhazmat.2005.11.029
  59. Wang, J. and Chen, C. (2014), "Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides", Bioresour. Technol., 160(5), 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
  60. WHO (2011), Guidelines for Drinking-Water Quality, World Health Organization.
  61. Wong, K.K., Lee, C.K., Low, K.S. and Haron, M.J. (2003), "Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions", Chemosphere, 50(1), 23-28. https://doi.org/10.1016/S0045-6535(02)00598-2
  62. Xiong, C.H. and Yao, C.P. (2013), "Adsorption behavior of Cu(II) in aqueous solutions by SQD-85 resin", Iran. J. Chem. Chem. Eng., 32(2), 57-88.
  63. Zhao, Y., Gu, F., Xu, J. and Jin, J. (2010), "Analysis of aging mechanism of SBS polymer modified asphalt based on Fourier transform infrared spectrum", J. Wuhan Univ. Technol. Mater. Sci., 25(6), 1047-1052. https://doi.org/10.1007/s11595-010-0147-3
  64. Zhu, J., Tian, M., Zhang, Y., Zhang, H. and Liu, J. (2015), "Fabrication of a novel "loose" nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification", Chem. Eng. J., 265, 184-193. https://doi.org/10.1016/j.cej.2014.12.054

Cited by

  1. Physical and Chemical Properties, Pretreatment, and Recycling of Municipal Solid Waste Incineration Fly Ash and Bottom Ash for Highway Engineering: A Literature Review vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8886134
  2. Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal vol.12, pp.1, 2018, https://doi.org/10.12989/mwt.2021.12.1.011
  3. Modeling of biofilm growth and the related changes in hydraulic properties of porous media vol.12, pp.5, 2018, https://doi.org/10.12989/mwt.2021.12.5.217