DOI QR코드

DOI QR Code

베어왈트에 의한 헝가리 데브레첸 핀슬러 기하학파의 형성의 역사

On the history of the establishment of the Hungarian Debrecen School of Finsler geometry after L. Berwald

  • 투고 : 2018.01.23
  • 심사 : 2018.02.22
  • 발행 : 2018.02.28

초록

In this paper, our main concern is the historical development of the Finsler geometry in Debrecen, Hungary initiated by L. Berwald. First we look into the research trend in Berwald's days affected by the $G{\ddot{o}}ttingen$ mathematicians from C. Gauss and downward. Then we study how he was motivated to concentrate on the then completely new research area, Finsler geometry. Finally we examine the course of establishing Hungarian Debrecen school of Finsler geometry via the scholars including O. Varga, A. $Rapcs{\acute{a}}k$, L. $Tam{\acute{a}}ssy$ all deeply affected by Berwald after his settlement in Debrecen, Hungary.

키워드

참고문헌

  1. L. BERWALD, Untersuchung der Krummung allgemeiner metrischer Raume auf Grund des in ihnen herrschenden Parallelismus, Math. Z. 25(1) (1926), 40-73. https://doi.org/10.1007/BF01283825
  2. L. BERWALD and O. VARGA, Integralgeometrie 24. Uber die Schiebungen im Raum, Math. Z. 42 (1937), 710-736. https://doi.org/10.1007/BF01160106
  3. L. BERWALD, Uberdie n-dimensionalen Cartanschen Raume und eine Normalform der zweiten Variation eines (n-1)-fachen Oberflachenintegrals, Acta Math. 71 (1939), 191-248 https://doi.org/10.1007/BF02547755
  4. L. BERWALD, Uber Finslersche und Cartansche Geometrie. I. Geometrische Erklarungen der Krummung und des Hauptskalars eines zweidimensionalen Finslerschen Raumes, Mathematica, Timisoara 17 (1941), 34-58
  5. L. BERWALD, Uber Finslersche und Cartansche Geometrie II. InvariantenbeiderVariation vielfacher Integrale und Parallelhyperfl ̈achen in Cartanschen Raumen, Compositio Math. 7 (1939), 141-176
  6. L. BERWALD On Finsler and Cartan geometries. III. Two-dimensional Finsler spaces with rectilinear extremals, Ann. of Math. 42(2) (1941), 84-112 https://doi.org/10.2307/1968989
  7. L. BERWALD, Uber Finslersche und Cartansche Geometrie. IV. Projektivkrummung allgemeiner affiner Raume und Finslersche Raume skalarer Krummung, Ann. of Math. 48(2) (1947), 755-781 https://doi.org/10.2307/1969139
  8. W. BLASCHKE and O. VARGA, Integralgeometrie 9. Uber Mittelwerte an Eikorpern, Mathematica 12 (1936) 65-80.
  9. H. BUSEMANN, The Geometry of Finsler space, Bull. of the Amer. Math. Soc. 56(1) (1950), 5-16. https://doi.org/10.1090/S0002-9904-1950-09332-X
  10. H. BUSEMANN, On Normal Coordinates in Finsler spaces, Math. Ann. 129 (1955), ??-??.
  11. H. BUSEMANN, The Geometry of Geodesics, Academic Press, 1955.
  12. E. CARTAN, Sur les espaces de Finsler, C. R. Acad. Sci. Paris Ser. I Math. 196 (1933), 582-586.
  13. E. CARTAN, Les espaces de Finsler, Actual. Sci. Ind., no. 79, Herman, 1934.
  14. S. S. CHERN, Local Equivalence and Euclidean Connections in Finsler Spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95-121.
  15. S. S. CHERN, On Finsler Geometry, C. R. Acad. Sci. Paris Ser. I Math. 314 (1992), 757-761.
  16. S. S. CHERN, Finsler Geometry is just Riemannian Geometry without quadratic restriction, Notices of AMS 1 (1996), 959-963.
  17. CHO M., History and Development of Sphere Theorems in Riemannian Geometry, The Korean Journal for History of Mathematics 24(3) (2011), 23-35. 조민식, 리만기하학에서 구면정리의 발전과 역사, 한국수학사학회지 24(3) (2011), 23-35.
  18. P. FINSLER, Uber Kurven und Flachen in allgemeinen Raumen, Dissertation at the University of Gottingen, 1919.
  19. C. F. GAUSS, Disquisitiones generales circa superficies curvas, Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores 6 (1827), 99-146.
  20. HAN G., A Historical Note on Riemann's life and Achievement, The Korean Journal for History of Mathematics 24(2) (2011), 61-70. 한길준, 리이만의 생애와 그의 업적에 대한 역사적 소고, 한국수학사학회지 24(2) (2011), 61-70.
  21. KIM Y. -W., JIN Y., Elie Cartan and Riemannian Geometry of 20th Century, The Korean Journal for History of Mathematics 22(2) (2009), 13-26. 김영욱, 김옥자, 엘리 카르탕과 20세기 리만기하학, 한국수학사학회지 22(2) (2009), 13-26.
  22. M. MATSUMOTD, Foundations of Finsler Geometry and special Finsler spaces, Kasheisha Press, 1986.
  23. M. MATSUMOTD, Finsler Geometry in the 20th-Centry in In Foundations of Finsler Geometry and special Finsler spaces, Kluwer Academic Press, 2003, 557-966
  24. ARK C. K., Lobachevsky's Philosophy of Mathematics and Non-Euclidean Geometry, The Korean Journal for History of Mathematics 24(4) (2011), 21-31. 박창균, 로바체프스키의 수리철학과 비유클리드기하, 한국수학사학회지 24(4) (2011), 21-31.
  25. A. RAPCSAK, Kurven auf Hyperflachen im Finslerschen Raume, Hungarica Acta Math. 1(4) (1949), 21-27
  26. A. RAPCSAK, Eine neue Charakterisierung Finslerscher Raume skalarer und konstanter Krummung und projektivebene Raume, Acta Math. Acad. Sci. Hungar. 8 (1957), 1-18. https://doi.org/10.1007/BF02025229
  27. B. RIEMANN, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen 13 (1867), 1-15.
  28. M. SPIVAK, A Comprehensive Introduction to Differential Geometry vol. II, 2nd Ed., Publish or Perish, 1999.
  29. J. SYNGE, A generalization of the Riemannian line-element, Trans. of the Amer. Math. Soc. 27(2) (1925), 61-67.
  30. J. SZILASI, A Setting for Spray and Finsler Geometry in In Foundations of Finsler Geometry and special Finsler spaces, Kluwer Academic Press, 2003, 1183-1426
  31. J. SZILASI, R. LOVAS and D. KERTESZ, Connections, Sprays and Finsler Structures, World Scientific, 2014.
  32. J. TAYLOR, A generalization of Levi-Civita's parallelism and the Frenet formulas, Trans. of the Amer. Math. Soc. 27(2) (1925), 246-264. https://doi.org/10.1090/S0002-9947-1925-1501309-9
  33. J. TAYLOR, Parallelism and transversality in a sub-space of a general (Finsler) space, Ann. of Math. 28(2) (1927), 620-628.
  34. O. VARGA, Beitrage zur Theorie der Finslerschen Raume und der affinzusammenhangenden Raume von Linienelementen Lotos, Prague 84 (1936), 1-4.
  35. O. VARGA, Integralgeometrie 3. Croftons Formeln fur den Raum, Math. Z. 40 (1935), 384-405.
  36. O. VARGA, Integralgeometrie 8. Uber Masse von Paaren linearer Mannigfaltigkeiten im projektiven Raum Pn; Rev. Mat Hispano - Americana (1935), 241-279.
  37. O. VARGA, Integralgeometrie 19. Mittelwerte an dem Durchschnitt bewegter Flachen, Math. Z. 41 (1936), 768-784. https://doi.org/10.1007/BF01180457
  38. O. VARGA, Bestimmung des invarianten Differentials in Finsler'schen Raumen, Mat. Fiz. Lapok 48 (1941). 423-435.
  39. WON D. Y., On the Development of Differential Geometry from mid 19C to early 20C by Christoffel, Ricci and Levi-Civita, Journal for History of Mathematics 28(2) (2015), 103-115. 원대연, 크리스토펠, 리치, 레비-치비타에 의한 19세기 중반부터 20세기 초반까지 미분기하학의 발전, 한국수학사학회지 28(2) (2015), 103-115. https://doi.org/10.14477/jhm.2015.28.2.103
  40. WON D. Y., On the History of the Birth of Finsler Geometry at Gottingen, Journal for History of Mathematics 28(3) (2015), 133-149. 원대연, 괴팅겐에서 핀슬러 기하가 탄생한 역사, 한국수학사학회지 28(3) (2015), 133-149. https://doi.org/10.14477/jhm.2015.28.3.133
  41. Hungarian Doctoral Council, 헝가리 박사학위 협의회, https://doktori.hu/index.php?menuid=192&lang=EN&sz_ID=4002.
  42. The MacTutor History of Mathematics Archive, 맥튜터 수학사 기록 보관소, http://www-history.mcs.st-and.ac.uk/Biographies.
  43. Mathematics Genealogy Project, 수학 계보 프로젝트, http://genealogy.math.ndsu.nodak.edu/index.php.
  44. Wikipedia 위키백과, http://en.wikipedia.org/wiki.