
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 204
Copyright ⓒ 2018 KSII

LDBAS: Location-aware Data Block
Allocation Strategy for HDFS-based

Applications in the Cloud

Hua Xu, Weiqing Liu, Guansheng Shu and Jing Li
Department of Computer Science and Technology,

University of Science and Technology of China
Hefei, Anhui, 230026 - China

[e-mail: {boxwh, cslwqxx, sgs2012}@mail.ustc.edu.cn, lj@ustc.edu.cn]
*Corresponding author: Jing Li

Received December 12, 2016; revised April 11, 2017; revised June 2, 2017; accepted November 9, 2017;

published January 31, 2018

Abstract

Big data processing applications have been migrated into cloud gradually, due to the
advantages of cloud computing. Hadoop Distributed File System (HDFS) is one of the
fundamental support systems for big data processing on MapReduce-like frameworks, such as
Hadoop and Spark. Since HDFS is not aware of the co-location of virtual machines in the
cloud, the default scheme of block allocation in HDFS does not fit well in the cloud
environments behaving in two aspects: data reliability loss and performance degradation. In
this paper, we present a novel location-aware data block allocation strategy (LDBAS).
LDBAS jointly optimizes data reliability and performance for upper-layer applications by
allocating data blocks according to the locations and different processing capacities of virtual
nodes in the cloud. We apply LDBAS to two stages of data allocation of HDFS in the cloud
(the initial data allocation and data recovery), and design the corresponding algorithms.
Finally, we implement LDBAS into an actual Hadoop cluster and evaluate the performance
with the benchmark suite BigDataBench. The experimental results show that LDBAS can
guarantee the designed data reliability while reducing the job execution time of the
I/O-intensive applications in Hadoop by 8.9% on average and up to 11.2% compared with the
original Hadoop in the cloud.

Keywords: Hadoop, HDFS, big data processing, data block allocation, cloud

A preliminary version of this paper appeared in IEEE CLOUD 2016, June 26-July 2, New York, USA. This version
includes an algorithm for data recovery problem and more comprehensive experimental evaluation. The research is
funded by the National Hi-Tech Research and Development Program of China under Grant 2014AA01A302, the
CERNET Innovation Project under the contract No. NGII20150110, and the National Key Research and
Development Program under 2016YFB0201402. We are also grateful to the Network Information Center of
University of Science and Technology of China for the support of hardware devices.

http://doi.org/10.3837/tiis.2018.01.010 ISSN : 1976-7277

mailto:sgs2012%7d@mail.ustc.edu.cn

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 205

1. Introduction

In recent years, data has grown in an explosive way and in various fields. There is an
increasing demand for data processing systems to perform large-scale data analytics. Since
traditional data processing systems have a restriction of scalability for massive data [1][23],
the MapReduce model [2] was proposed to handle big data problem efficiently. Especially,
Hadoop [3], the popular open-source implementation, has been widely used in industry and
academia. However, the economic cost and maintenance cost of physical infrastructure for
deploying Hadoop is prohibitive for some middle-small enterprises or individuals. As a result,
there is a growing interest in running Hadoop in the cloud, due to the advantages of cloud
computing, such as on-demand self-service and rapid elasticity [4]. For example, Amazon has
provided the service of Hadoop in the cloud to the customers through EMR [5].

Hadoop Distributed File System (HDFS) [8] is one of the fundamental support systems of
MapReduce-like frameworks [10], such as Hadoop [3], Spark [9], etc. It is designed to store
large-scale data sets reliably and to stream them at high bandwidth to upper-layer applications.
The key to achieving these goals is an excellent strategy of data block allocation that consists
of two stages in HDFS. One stage is the initial data allocation, which is responsible for the task
of allocating data blocks of new files into HDFS. The other stage is the data recovery, which is
in charge of reallocating the missing data blocks when some nodes break down.

The default scheme of data allocation in HDFS performs well in the physical environments.
However, it does not perform well in the cloud environments. This is because HDFS is not
aware of the situation that multiple virtual machines (VMs) may co-locate on the same
physical machine (PM). It still treats the virtual nodes as physical nodes, which brings two
serious problems: data reliability loss and performance degradation.
 Data reliability loss. HDFS achieves the objective of storing massive data reliably by

placing multiple replicas of a data block in different physical nodes. In the cloud
environments, though different replicas of one data block are allocated to different virtual
nodes by default, the virtual nodes with different replicas of the same data block may
co-locate on the same physical machine. It will harm the data reliability and raise the
possibility of data loss when the physical host crashes [6].

 Performance degradation. In the cloud, the processing capacities (PCs) of VMs with
the same configuration may be actually unequal among different PMs (especially for the
disk I/O bandwidth), due to the competition of hardware resources among the co-located
VMs [7]. Meanwhile, Hadoop is designed for the homogeneous environments, and it
allocates data blocks almost evenly across different nodes. It will cause unbalanced
processing loads for the nodes with different PCs. Once the nodes with higher PCs finish
processing the data blocks at local, they have to execute excessive remote tasks (known as
poor data locality). Since network bandwidth is lower than local disk I/O bandwidth in
most cases, remote tasks are usually less efficient than local tasks, and may lead to plenty
of unnecessary network traffic. Hence, the unbalanced processing loads would severely
decrease the performance of HDFS-based applications in the cloud.

To solve these two problems, a straightforward solution is to avoid the co-location of VMs.
However, it will decrease the resource utilization and harm the economic profit of cloud
providers. Hence, some other schemes are proposed from the aspects of task scheduling or
data block allocation. New task scheduling [7] detected and tackled stragglers more accurately,

206 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

eventually mitigated the performance degradation for Hadoop in heterogeneous environments.
However, this category of approaches cannot solve the problem of data reliability loss from
the aspect of improving task scheduling. The block allocation strategy [6] was proposed to
address above two problems. Nevertheless, they only considered the scenario that the number
of VMs in different PMs are equal, which is not universal in the practical cloud environments.
As a result, such method cannot adapt to various kinds of virtual topologies in the cloud. To
the best of our knowledge, aforementioned two problems have not been well resolved together
by existing work.

These two problems occur not only after the initial data allocation but also after the data
recovery. When some nodes crash, the missing data blocks should be recovered promptly to
avoid losing more replicas. Even if the data blocks are nicely distributed after the initial
allocation, the aforementioned two problems may still exist after the data recovery. This is
because that it makes the same assumptions for the storage nodes with the stage of initial data
allocation, so that they follow the same allocation strategy. Hence, there may exist these two
problems (data reliability and performance degradation) in the whole lifecycle of data. They
greatly affect the effectiveness of HDFS in the cloud. We will further discuss these two
problems with a more detailed analysis in the section of motivation.

In this paper, we propose a novel location-aware data block allocation strategy (LDBAS)
for HDFS in the cloud to mitigate performance degradation and enhance data reliability at the
same time. Firstly, we leverage the relative locations of VMs to form the logical network
topology of the virtual cluster, which would not expose the actual underlying network
topology of cloud datacenter for safety concerns. By using the logical network topology, we
avoid the situation that two same replicas are allocated to the same PM, and improve the data
reliability eventually. Then, considering the differences among processing capacities of virtual
machines in the cloud, we strive to achieve the state that the numbers of blocks in different
nodes are proportional to their processing capacities. This can contribute to more balanced
processing loads for local data blocks of all nodes and better data locality. In a word, with the
optimized data block allocation, we can enhance the data reliability of HDFS and improve the
performance of HDFS-based applications in the cloud at the same time. Finally, we apply
LDBAS for two stages of data block allocation (initial data allocation and data recovery) to
keep the improvement in the whole lifecycle of data in HDFS.

To summarize, our contributions in this paper are illustrated as follows:
 We propose a novel location-aware data block allocation strategy (LDBAS) to alleviate

the performance degradation for HDFS-based applications in the cloud while
guaranteeing the expected data reliability. We apply LDBAS to the initial data allocation
and data recovery, and design the corresponding algorithms.

 We implement LDBAS into an actual Hadoop cluster in the cloud environments and
conduct extensive experiments. The results show LDBAS can guarantee the designed
data reliability and reduce the job execution time of I/O-intensive applications in Hadoop
by 8.9% on average and up to 11.2% compared with original Hadoop in the cloud.

This paper is an extended version of [21], based on which additionally includes a data
recovery algorithm using LDBAS and a more comprehensive experimental evaluation. The
rest of this paper is organized as follows. Section 2 provides the background and motivation.
The proposed data block allocation strategy will be described in details in Section 3. We show
the experimental evaluation in Section 4. Section 5 raises some discussion. Related works are
discussed in Section 6. Finally, we conclude this paper in the last section.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 207

2. Background and Motivation
In this section, firstly we describe the default strategy used by HDFS to allocate data blocks.
Then we identify two problems caused by the default allocation strategy for HDFS in the cloud
environments, which motivate us to design a new data allocation strategy in HDFS.

2.1 Background: The Design of HDFS
Hadoop Distributed File System [8], is one of the fundamental support systems for Hadoop [3],
Spark [9] and other MapReduce-like big data processing frameworks [10]. It is designed to
store large-scale data sets reliably and to stream those data sets at high bandwidth to
upper-layer applications. To achieve these goals, HDFS splits a file into small data blocks and
place them on different nodes in the cluster. Moreover, replication strategy is used to maintain
data reliability, and the replication factor is set as 3 by default. The redundant replicas can also
be useful to improve the read bandwidth for upper-layer applications. Furthermore, HDFS
provides an API that exposes the locations of file blocks and allows applications to schedule a
task to the node which hosts the data block. Scheduling a task close to the corresponding data
is known as data locality. These important characteristics make Hadoop more efficient.
1) Two Stages of Data Allocation in HDFS: HDFS consists of two important stages of data
allocation to maintain the data reliability. One stage is the initial data allocation when data
blocks are firstly written into HDFS. Multiple replicas of data blocks should be allocated into
different nodes as far as possible. The other stage is the data recovery, which will be triggered
once some DataNodes break down. The missing replicas of data blocks in the corrupt nodes
should be reallocated to the live DataNodes in time to avoid losing more replicas.
2) Default Strategy of Data Allocation in HDFS: HDFS supports tree hierarchical network
topology as shown in Fig. 1, which assumes that HDFS runs on a cluster consisting of many
data centers filled with racks of computers. The bandwidth of nodes within a subtree may be
greater than the bandwidth between subtrees in general, which means that keeping all replicas
within the same rack can reduce the write cost. However, the whole rack may lose connection
with other nodes, which will make data unavailable. Hence, the default data block allocation
strategy in HDFS is designed to get a tradeoff between minimizing the write cost and
maximizing the data reliability and aggregate read bandwidth.

D1 D2

R1

/

H1 H2 H3

R2

H4 H5 H6

R3

H7 H8 H9

R4

H10 H11 H12
Fig. 1. Tree hierarchical network topology of HDFS, where D means the data centers, R indicates the

racks and H represents the nodes

This strategy is used in two stages of data allocation in HDFS. In the stage of the initial data
allocation, HDFS places two replicas on different nodes at one rack and the third replica at
another rack. If the replication factor is more than three, the rest replicas are allocated
randomly on different nodes. Similarly, in the stage of data recovery, HDFS finds out the
missing data blocks in the broken nodes, and reallocates them into the live nodes while making
all the replicas satisfying the similar data reliability as in the initial allocation.

208 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

3) Assumptions in the Default Strategy of Data Allocation in HDFS: The default
allocation strategy makes two implicit assumptions:
 The crashes of nodes are independent with each other unless the whole rack loses

connection with the others.
 The nodes are homogeneous and serve almost the equal processing capacities, hence

HDFS keeps almost the same number of data blocks between DataNodes.
In the physical environments, it ensures sufficient data reliability and provides excellent

read bandwidth for upper-layer applications. However, it does not perform well in the cloud
environments, mainly due to the co-location of VMs. We explain this in the next subsection.

2.2 Motivation
HDFS works effectively in the physical environments. However, the two assumptions
described in the last subsection do not hold in the cloud environments, which brings two
problems: data reliability loss and performance degradation for upper-layer applications.

Data reliability loss: The assumption 1 breaks down as DataNodes may co-locate in the
same PM inside the virtual cluster. Once a PM crashes, there will be more than one crashed
DataNode, which means that two or more replicas of the same file block may be lost at the
same time. For example, as shown in Fig. 2, all replicas of block 1 and 10 would be lost once
PM1 crashes. This situation does not only happen after the initial data allocation, but also after
the data recovery when some data nodes break down. In Fig. 2, the block 5 is nicely allocated
across three different PMs. Once PM3 breaks down, the replica of block 5 in VM6 will be lost.
After the data recovery, the missing replica may be reallocated to VM1 under PM1. Since there
already exists one replica in VM3 under PM1, it results in bad data reliability for block 5.

For 12 blocks in 9 DataNodes built in the cloud across 4 PMs

PM4

H1

3

6

8

12

VM7

H1

3

6

9

12

VM8

H1

3

6

9

12

VM9

PM2

H1

2

4

7

11

VM4

H1

2

5

7

11

VM5

PM3

H1

2

5

8

11

VM6

PM1

H1

1

4

7

10

VM1

H1

1

4

8

10

VM2

H1

1

5

9

10

VM3

Fig. 2. One example of file blocks distribution for HDFS in the cloud

In order to identify the seriousness of this problem, we constructed a virtual Hadoop cluster

with 16 virtual DataNodes in 8 PMs based on OpenStack cloud platform [11]. Then, we wrote
data sets into HDFS with sizes of 4GB, 8GB, and 16GB, and counted the data reliability,
which was reflected by the proportion of blocks with 3 replicas across different PMs. The
result is shown in Fig. 3(a). Similarly, we also observed the data reliability after data recovery
by simulating one DataNode’s crash. The result is shown in Fig. 3(b). Both of the results show
that merely around 70% of data blocks could achieve the expected data reliability.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 209

Fig. 3. (b) Data reliability after data
recovery for HDFS in the cloud

Fig. 3. (a) Data reliability after initial
data allocation for HDFS in the cloud

Performance degradation: The performance degradation comes from many reasons.

Except for the additional load of virtualization, the main reason is the heterogeneity of
processing capacities between VMs in the cloud, which violates the assumption 2. Generally,
the co-located VMs share and compete for physical resources in their host machine, especially
the disk I/O bandwidth. The contention is particularly serious when the virtual nodes execute
some similar work at the same time, such as in map phase when they read data from the disk in
Hadoop [7]. Therefore, the processing capacities of VMs with the same configuration may be
actually unequal among different PMs, especially when PMs host different numbers of VMs.
For example in Fig. 2, the disk I/O bandwidth of VM6 may be much higher than VM1.

The heterogeneity of processing capacities greatly affects Hadoop’s performance under the
default strategy of data allocation in HDFS. The reason is that the distribution of data blocks is
almost even across DataNodes, no matter after the initial data allocation or data recovery by
using the default strategy. It will lead to poor data locality, which means the nodes with higher
PCs may execute many remote map tasks and read massive data through the network. Since
network bandwidth is lower than local disk I/O bandwidth in most cases, excessive remote
map tasks will lead to longer task time in map phase and competition for network resource
with the shuffle operation. Hence, the performance of upper-layer applications will decrease in
the cloud environments by using the default allocation strategy in HDFS.

In general, these two problems come from the co-location and resource sharing of VMs. To
solve these problems, a straightforward solution is to avoid the co-locations of VMs. However,
it takes more restrictions for VM placement in the cloud. For example, the number of available
physical hosts must be larger than the number of virtual HDFS nodes, even when many hosts
may be not suitable to deploy HDFS nodes in the cloud, such as the hosts with shared storage
only. Hence, avoiding the co-locations of VMs is practically unsuitable. This motivates us to
design a preferable data block allocation strategy in HDFS to adapt to the cloud environments.

3. Our Strategy
This paper aims to present a new data block allocation strategy (LDBAS) of HDFS to address
the problems of data reliability loss and performance degradation for upper-layer applications
in the cloud. In this section, firstly we explain the principles we use to allocate different data
block replicas in HDFS. After that, we describe the problem definitions of data block
allocation when writing a new file to HDFS and data block recovery when some DataNodes
fail. Finally, we describe our new algorithms corresponding to these two problems.

210 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

3.1 The Allocation Principles Used in Our Strategy
The primary insight of our new allocation strategy is as follow: the essential reason of these
two problems is the co-location of VMs, so we want to make full use of the information of
locations where the VMs are co-located in PMs for preferable data block allocation. This
location information can be provided by the cloud vendors or obtained through some network
topology inference technologies [12][13]. Besides, taking the potential safety risk for cloud
vendors into consideration, we only exploit the information of the relative locations of VMs to
form the network topology in our strategy, which is an abstract logical topology and would not
expose the actual underlying network topology of the cloud data center. For example in Table
1, we just get the information about if two VMs are inside the same PMs, or if they are at the
same rack. We will further discuss how to obtain the location information of a virtual cluster in
more detail in Section 5.

Table 1. Network distance defined in our modified Hadoop
Source_location Target_location Distance Meaning

/R1/PM1/VM1

/R1/PM1/VM1 0 the same node
/R1/PM1/VM2 2 nodes in the same PM
/R1/PM2/VM3 4 nodes in different PMs at the same rack
/R2/PM3/VM4 6 nodes at different racks

Table 1 denotes the new network distance used in our new strategy. We add a new layer

representing the physical host of the virtual nodes to identify the locations of DataNodes. New
location description is like /R1/PM1/VM2, which means the virtual node VM2 is located in
physical machine PM1 under rack R1. Meanwhile, the network distance can be used to
identify the relative location between two DataNodes. Based on the information of network
topology, we give the principles which we use to allocate the data blocks.

To address the problem of data reliability loss, our simple principle is to avoid any two
replicas of one data block in the same PM though in different VMs. For typical three-replica
strategy, we summarize the principles to ensure data reliability in our strategy as follows:
 Principle 1: Do not place two same replicas in the same VM.
 Principle 2: Do not place two same replicas in the same PM.
 Principle 3: Place three replicas under two racks as far as possible.
These three principles guarantee data reliability when a single VM, PM or a whole rack
crashes. Data reliability at the level of VMs should have the highest priority, then at the level
of PMs, finally at the level of the racks.

To address the problem of performance degradation for upper-layer applications, we
allocate an appropriate number of file blocks into DataNodes to balance all nodes’ estimated
processing time as far as possible. The estimated processing time indicates how much time the
node will cost to process all local data blocks of this file. With balanced processing time, more
data blocks are expected to be processed at local, which means better data locality. Hence,
there may be fewer remote tasks and less network traffic, which is very useful to reduce the
total job completion time. Moreover, considering that the requests of file blocks arrive at
HDFS one by one, we can only estimate the processing time according to the information
about the arrived data blocks. In short, our principle to improve the performance of data
processing is described as follow:
 Principle 4: Place data block replicas on the DataNodes with the least current estimated

processing time for each arriving data block.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 211

Different methods for estimating processing time can be plugged into our strategy. We
estimate every node’s processing time as:

 * /ProcessingTime = BlockSize BlockNumber ProcessingCapacity , (1)
where BlockSize is the data block size chosen by users, BlockNumber is the number of data
blocks that have been allocated to this node, and ProcessingCapacity (PC) denotes the
average data size that the node can process per second in the map phase. PC can be a general
configuration of each node in Hadoop, which users can configure according to their experience
to satisfy their special needs. However, it is difficult to model a node’s practical PC for
unknown map tasks when writing a file into HDFS. An approximation is to model the ratio of
processing speed between nodes since the nodes in Hadoop always execute the similar work.

In our strategy, we use read bandwidth as the PC of a node based on the following reasons.
 There are a lot of I/O-intensive tasks in Hadoop’s jobs.
 The time cost of the read/write operations often accounts for most of the completion time

in the map phase.
 In addition, the I/O interference is serious because of the virtualization implementation.

Some researchers believe that I/O virtualization is the main bottleneck in the cloud [14].
Especially, we use the node’s sequential read bandwidth as the PC since the sequential read

for large files occupies a large proportion in the map phase. In our strategy, we configure it for
each node after measuring it by using the open-source benchmark tool Hdparm. We control all
VMs to run the measurement tool at the same time and get the ratio of PCs of all VMs. Then,
we can get the static PCs and configure them after the virtual cluster has been initialized. On
the other hand, the PCs may vary with the number of the VMs inside the same physical host
over time. Hence, the PC should be dynamically reconfigured over time. We further discuss
the measurement of the PC in more detail in Section 5.

3.2 Initial Data Allocation Problem

3.2.1 Problem Statement
Based on the aforementioned principles, we give a formalized description of initial data
allocation problem and our new allocation algorithm.

In the cloud, a virtual Hadoop cluster consists of a set of virtual nodes (vm1, vm2,…, vmm)
which are hosted in different PMs under different racks. We define a matrix D of m*m to
identify the network distance between nodes, where m is the number of DataNodes. Dij means
the network distance between vmi and vmj. The detail of network distance is described in
Table 1. Through the network topology, we can obtain the number of racks and PMs, denoted
as rackn and PMn , respectively. Moreover, to identify the processing capacities of different
nodes, we use a vector P with the length of m. Pi denotes the PC of the node vmi.

When one request for writing a file to HDFS arrives at the NameNode, the NameNode will
return a list of nodes with a length of r to the client (r represents the replication factor).
Assuming that the total number of blocks is n, the initial data block allocation problem is to
find r locations for n data blocks one by one, i.e., r*n locations in total. Because there are m
different possible locations for each block, we can describe the final allocation result as a
matrix A with a size of m*n. Aij denotes that if the data block j is allocated into the node vmi,
where {0,1}, i [0,m), j [0,n)ijA ∈ ∀ ∈ ∈ . Our objective is to minimize the standard deviation of
the estimated processing time of all nodes in the map phase. If the size of each data block is s,
we can get the estimated time Ti of processing local data blocks for each node as follow:

212 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

0 *
, [0,)ijj n

i
i

s
i mA

T
P

≤ <∑
= ∀ ∈ (2)

Then we can get the standard deviation of estimated processing time (STD-EPT) as follow:

()2
0 0 m jii m j

time
mT T

mσ
≤ < ≤ <−∑ ∑

= (3)

We define the initial data block allocation problem as finding a matrix A to minimize the
above objective function timeσ . Moreover, in order to enhance the data reliability, we propose
several constraints (4)-(7) to this problem.

[0,), [0,) : {0,1}iji m j n A∀ ∈ ∈ ∈ (4)

0[0,) : iji mj n rA≤ <∀ ∈ =∑ (5)

The constraints (4) and (5) enhance the data reliability across VMs. The constraint (4)
describes that there is at most one replica in the same virtual node for each data block. And the
constraint (5) indicates that there should be r replicas in total across m virtual nodes for each
data block to guarantee the data reliability.

[0,) : 4 4 4ab ac bcj n and andD D D∀ ∈ ≥ ≥ ≥ ,
3 1PM aj bj cjif and A A An ≥ = = = (6)

[0,) : =6 6 6ab ac bcj n or orD D D∀ ∈ = = ,
2 1aj bj cjrackif andn A A A≥ = = = (7)

Then, for simplicity, we give the constraints of the typical three replicas for data reliability
across the PMs and racks as shown in (6) and (7). If the replication factor r is greater than 3,
the rest replicas can be allocated randomly on different nodes to improve read bandwidth of
upper-layer applications just as the default block allocation strategy of HDFS. Thus, among
the r replicas of each block, at least three replicas should meet the constraints (6) and (7). We
denote a, b, and c as the locations of these three replicas. To be specific,
 The constraint (6) enhances the data reliability across PMs. If the number of PMs is equal

to or greater than 3, three replicas of the same block should be allocated on at least 3
different PMs. That is the distance between any two replicas should be more than 4.

 The constraint (7) enhances the data reliability across racks. If the number of racks is
equal to or greater than 2, three replicas of the same block should be allocated on at least
2 different racks. That is at least one distance between two replicas should be 6.

3.2.2 The Initial Data Allocation Algorithm
To find the best locations for the replicas of each arriving block, the ideal solution is to find

out all the combinations of any 3 DataNodes. After that, the combinations could be traversed
to find the best combination with the minimum contribution to STD-EPT while satisfying the
data reliability. The ideal data block allocation algorithm (IDBAS) is described in Algorithm 1.
However, this traversal algorithm is highly time-consuming. In each loop, the time complexity
of looking for all the combinations of any 3 nodes is O(()3

m), which means O(m3) (m is the

number of DataNodes). The time complexity of calculating the STD-EPT is O(m). As a result,
traversing all the combinations to find out the nodes with the minimum contribution to
STD-EPT will cost nearly O(m4). When there are 128 data nodes, the response time will
exceed 1 second for a single block request (the detailed result of the simulation experiment is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 213

described in Section 4.1). Moreover, the NameNode usually processes more than dozens of
requests at the same time. Thus, IDBAS is not suitable for HDFS due to the high time cost.

Algorithm 1: the ideal data block allocation algorithm (IDBAS)
Input:

D: the matrix of network distance between nodes
P: the array of processing capacity of nodes
s, r, n: the block size, block replication factor and block number of file writing to HDFS

Output:
A: the allocation matrix of file blocks

1. Initialize Aij = 0, timei = 0
2. nodecombination  the combinations of any 3 datanodes
3. for block = 1 to n do
4. update timei //using the equation (2)
5. setall the combinations in nodecombination which meet the constraints (6) (7)
6. if set is NULL //there are no combinations meeting all the constraints
7. set all the combinations in nodecombination which meet the constraints (6)
8. if set is NULL //there are no combinations meeting only the constraint (6)
9. set nodecombination //use all the combinations as the candidate
10. chosenNodes  the nodes in the set which contribute the minimum time to the standard

deviation of estimated processing time
11. update A for the replicas on the nodes in chosenNodes
12. end for
13. return A

On this basis, we propose a new greedy algorithm (shown in Algorithm 2) to allocate each

arriving data block, eventually to minimize the objective function while satisfying the
constraints.

As seen in Algorithm 2, we firstly update the estimated processing time of all DataNodes for
the arrived blocks of this file in line 3. Then, we use three steps to allocate the three replicas for
each block in lines 5-20. We allocate the first replica on nodeA whose estimated processing
time is the minimum in the cluster. Then we seek nodeB for the second replica according to the
network distance between nodeA and nodeB (distanceAB). The priority of distanceAB is as
follows: 6 > 4 > 2. We choose nodeB whose estimated processing time is the minimum from
the candidate nodes in the cluster. To seek nodeC for the third replica, we consider the
combination of the distances: {distanceAC, distanceBC}. The priority of the distance
combination is as follows: {4, 6}>{6, 6}>{4, 4}>{2, 2}, which can enhance the data reliability
as far as possible. Finally, we choose nodeC whose estimated processing time is the minimum
from the candidate nodes. For those replicas that exceed the replication factor 3, we straightly
choose the nodes whose estimated processing time is the minimum in line 21.

Algorithm 2: the initial data block allocation algorithm (LDBAS-initial)
Input:

m: the number of datanodes
D: the matrix of network distance between nodes
P: the array of processing capacity of nodes
s, r, n: the block size, block replication factor and block number of file writing to HDFS

Output:
A: the allocation matrix of file blocks

1. Initialize Aij = 0, timei = 0

214 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

2. for block = 1 to n do
3. update timei //using the equation (2)
4. Initialize setA{1,2,…,m}, setBNULL, setCNULL
5. nodeAthe node in setA where timenode is the minimum
6. for distanceAB is (6, 4, 2) in turn and setB is NULL do
7. for i = 1 to m do
8. if DnodeA,j == distanceAB then setB.append(i)
9. end for
10. end for
11. nodeBthe node in setB where timenode is the minimum
12. if nodeB is NULL then update A and return A
13. for (distanceAC,distanceBC) is (4, 6) (6, 6) (4, 4) (2, 2) in turn and setC is NULL do
14. for i1 to m do
15. if (DnodeA,i, DnodeB,i) is (distanceAC, distanceBC) then setC.append(i)
16. end for
17. end for
18. nodeCthe node in setC where timenode is the minimum
19. if nodeC is NULL then update A and return A
20. update AnodeA,block AnodeB,block AnodeC,block
21. allocate the rest replicas on random nodes with the minimum time
22. end for
23. return A

From the algorithm, we can see that the time complexity in each loop of LDBAS is O(m).

The time complexity of choosing each replica is O(m) in line 5, in lines 6-12, and in lines
13-19. It will save a great deal of time cost compared with the ideal traversal algorithm. We
will evaluate the time cost in the simulation experiments in Section 4.1.

3.3 Data Block Recovery Problem
Once some DataNodes crash, the NameNode will scan all the files to find out all the missing
data block replicas which need to be restored. These corrupted data blocks will be added to a
queue called blockToReplication. Our objective is to find the nodes where the replicas should
be reallocated for each corrupted data block, to satisfy the data reliability and improve the
performance of upper-layer data processing applications. Firstly, we give the formalized
description of this problem. Then, based on the principles mentioned in Section 3.1, we
suggest our new data recovery algorithm for this recovery problem.

3.3.1 Problem Statement
Similar to Section 3.2.1, we define a matrix D to identify the network distance between m

live DataNodes, and define a vector P to identify the processing capacities of DataNodes.
When some DataNodes crash, HDFS will find out all the corrupted data blocks by scanning
the whole file blocks periodically, and then add them to the queue blockToReplication. For
each data block d in the queue blockToReplication, we use rd to indicate the number of total
replicas which the block d needs, and nd to represent the total number of data blocks of the
same file. Ad denotes the current distribution of file data blocks for block d, where the size of
Ad is m*nd. Then we need two steps to restore these missing data block replicas.

Firstly, we need to seek the source node which the additional replicas can copy from for
each block d. To avoid exorbitant load for DataNodes in the process of recovery, there should
be no excessive recovery work on the same node. We use Wt to refer the current recovery work

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 215

(the number of data blocks to be recovered) in node t and MaxLimit to indicate the upper limit
of recovery work for each node.

Secondly, we need to look for a set of target nodes Nd for the data block d. After restoring
the replicas on these nodes, it will lead to a new data distribution called d

newA . d
newA needs to

satisfy the data reliability and balanced block distribution to improve the performance of data
processing applications. We can formally define the recovery problem as finding the node sets
Nd for the block d to minimize the STD-EPT. The objective function is similar to the equation
(3), but iT and ijA in (3) should be d

iT and d
ijA respectively, which represents the current

information of data blocks that belong to the same file with block d.

In order to enhance the data reliability of data block d, we define the same constraints as the
constraints (4)-(7). Different from the initial data allocation problem, the matrix A in (4)-(7)
should be Ad instead. Moreover, to guarantee that there is no excessive recovery work on one
same node, we introduce one additional constraint (8) to this problem. It makes sure that there
are no more than MaxLimit workloads of restoring data blocks in each DataNode.

[0,) : ,t tt m MaxLimitW W∀ ∈ ≤ ∈ Ζ (8)

3.3.2 The Data Recovery Algorithm
Based on the principles in Section 3.1.1, we introduce our new data recovery algorithm as

described in Algorithm 3. It consists of two steps to restore the missing replicas. Firstly, we
choose the source node with the minimum recovery work to avoid overwhelming network
load in one same node, which can restore the data blocks as soon as possible in lines 7-10.

Then, given the source node, we look for the target nodes to create additional replicas in
lines 12-28. For each data block in the queue blockToReplication, we calculate the estimated
processing time according to the distribution of live data blocks in line 3. If some blocks of the
file have got target recovery nodes but have not been written to the metadata, we update the
distribution matrix in advance based on the result of target nodes in the last loop in line 2. This
can guarantee the accuracy of the estimated processing time in each loop.

When choosing target nodes, we consider the typical three replicas for a data block in lines
12-26 and the rest replicas will be allocated on random nodes whose processing time are the
minimum according to line 27. For typical three replicas, there will be one or two replicas that
need to be created additionally. When we choose target node dn1 for the second replica, we
consider the set of candidate nodes that satisfy the data reliability (the network distance
between dn0 and dn1 is 6, 4 and 2 in turn). Then we choose the node with the minimum time in
the candidate nodes as dn1. For the third replicas, we consider the network distance between
the nodes of existing replicas. If they are across rack (the network distance is 6), we consider
the nodes at the same rack with source node or dn1. Similarly, we choose the node with the
minimum time in the set of candidate nodes as dn2. If the network distance between the source
node and dn1 is lower than 6, we will choose a node which has the minimum time and has the
network distance of 6 with the source node or dn1.

Algorithm 3: The data recovery algorithm
Input:

D: the matrix of network distance between nodes
P: the array of processing capacities of nodes.
block: the first block in the queue of blocks which need to be restored
Ablock: the distribution matrix of live data blocks for the block.

216 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

Output:
srcNode: the source node which the additional replicas can copy from
targetNodes: the set of target nodes where the replicas should be created

1. srcNode = chooseSrcNode(block)
2. update the block distribution matrix Ablock for the file which has chosen the target nodes for a part

of data blocks.
3. update ProcesingTime using the information of Ablock and P //using the equation (2)
4. targetNodes = chooseTargetNode(srcNode, block)
5. return (srcNode, targetNodes)
6.
7. function chooseSrcNode(block)
8. liveNodes = block.getLiveReplicaNode()
9. srcNode  the node with the minimum work and (node.work < MaxLimit) in liveNodes
10. return srcNode
11.
12. function chooseTargetNodes(srcNode, block)
13. if block.numLiveReplicas == 1 and numNeedReplicas >0 then
14. dn1 the node whose processing time is minimum and where , 1 6srcNode dnD ==
15. targetNodes.add(dn1)
16. if --numNeedReplicas == 0 then
17. return targetNodes
18. if block.numLiveReplicas <=2 then
19. if , 1 6srcNode dnD == then
20. dn2the node whose processing time is minimum and where , 1 4node dnD == or

, 4node srcNodeD ==
21. targetNodes.add(dn2)
22. choose the nodes whose processing time is minimum for other replicas
23. return targetNodes
24. else:
25. dn2the node whose processing time is minimum and where , 1 6node dnD ==
26. targetNodes.add(dn2)
27. choose the nodes whose processing time is minimum for additional replicas
28. return targetNodes

4. Experimental Evaluation
In this section, we comprehensively evaluate our new strategy through the simulation
experiments and realistic experiments in a Hadoop cluster. In particular, we mainly evaluate it
in three aspects: data reliability, the performance of data processing applications and the time
cost of the algorithm for allocating each data block. We will describe these metrics in detail in
the subsequent subsections.

4.1 Simulation Experiment
Firstly, we carry out a series of simulation experiments to compare our initial allocation
algorithm (LDBAS-initial) with the ideal traversal algorithm which contains the theoretical
optimal solution (IDBAS). We use two metrics to evaluate the effectiveness of LDBAS-initial.

The standard deviation of estimated processing time (STD-EPT): STD-EPT is the same
metric as the objective function shown in (3), which can reflect the quality of data block

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 217

Fig. 4. STD-EPT in simulation
(lower is better)

Fig. 5. Time cost of allocating each data
block (lower is better)

distribution. Through this theoretic evaluation, we can find the gap between the solution of our
strategy and the theoretic optimal solution. The results are shown in 4.1.2.

The time cost of the initial data allocation algorithm: this metric represents the
execution efficiency of two algorithms. Through the theory evaluation of the time cost of the
algorithms, we attempt to prove the high time cost of IDBAS, which motivates us to design
LDBAS-initial with the lower time cost. The results are shown in 4.1.3.

4.1.1 Simulation Setup
We compare these two algorithms by simulating allocating data blocks to DataNodes and

run each group independently for 20 times. There are two variables in the simulation.
The number of data blocks: This variable can reflect the change of STD-EPT along with

the increase in the number of data blocks. We set 32 DataNodes on 20 physical machines at 4
racks, and adjust the number of data blocks from 64 to 1024. After allocation, we analyze the
allocation result and calculate the STD-EPT using the equation (3). The value of processing
capacity of each DataNode is set as the reciprocal of the number of virtual nodes in the same
PM, which varies from 0 to 1 data block per second.

The number of nodes: This variable can reflect the time cost for each data block along with
the increase in the number of nodes. We set the number of nodes from 8 to 128 and simulate
allocating 256 data blocks into these nodes. Then we record the average execution time of
allocating each data block.

4.1.2 Effectiveness of Algorithms in Simulation
Fig. 4 shows the standard deviation of estimated processing time (STD-EPT) for the local

data blocks of all nodes. The lower STD-EPT means the better distribution of data blocks. As
illustrated, the STD-EPT of LDBAS is always close to the optimal solution (IDBAS) along
with the increase in the number of data blocks. Since the value of processing capacity is set as
from 0 to 1 data block per second, the mean processing time is from 10 to 150 seconds along
with the increase of data blocks. It shows that the standard deviation of the processing time of
LDBAS and IDBAS both are extremely small (both of them are less than 1 second). Hence, the
results show that we can achieve the near-optimal distribution of data blocks.

4.1.3 Time Cost of Algorithms in Simulation

https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E6%89%A7%E8%A1%8C%E6%95%88%E7%8E%87
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E6%89%A7%E8%A1%8C%E6%95%88%E7%8E%87

218 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

As illustrated in Fig. 5, LDBAS can get the allocation result for each data block in less than
10-3 second along with the increase in the number of DataNodes. However, the time cost of
IDBAS increases in an explosive way. And when the number of DataNodes is 128, the
execution time of IDBAS is more than 1 second for one each data block allocation. As the
NameNode usually handles more than dozens of requests for data block allocation at the same
time and has some other managing tasks for the whole cluster, the cost of IDBAS is obviously
unacceptable. In contrast, our strategy can allocate each data block within 1 millisecond
which satisfies the real-time requirement and get the near-optimal solution at the same time.

4.2 Experiments in an Actual Hadoop Cluster
In this section, we implement our strategy into an actual Hadoop cluster and conduct a series
of experiments to evaluate our strategy (LDBAS) compared with the default data block
allocation strategy (DDBAS) used in HDFS. We will describe the experiments from four
aspects as follows: the data reliability, the time cost for allocating each data block, the standard
deviation of estimated processing time and the effect of improving performance for some data
processing applications. We firstly describe the experimental environment, then give the
experimental results and analysis.

4.2.1 Experimental Environment
 Hadoop cluster in the cloud. We implement LDBAS into a virtual Hadoop cluster on a

private cloud at local based on OpenStack platform. Hadoop version is 2.6.0. We apply
for 17 KVM-based VMs to run virtual Hadoop cluster, which consists of one NameNode
and 16 DataNodes. The ResourceManager is running with NameNode and the
NodeManagers are running with DataNodes. All VMs are configured with 4 virtual cores,
8 GB memory, and 80GB disk. These VMs are hosted on nine PMs, which are under two
racks connected by Gigabit Ethernet. These 17 VMs’ locations are shown in Table 2. We
configure the processing capacity for each node by measuring disk I/O bandwidth with a
benchmark tool known as Hdparm. We control all VMs to run the measurement tool at
the same time, then we get the ratio of sequential read bandwidth as the PCs for all VMs.

 Benchmark suite. We choose a popular open-source benchmark suite known as
BigDataBench [15]. BigDataBench models many typical workloads for big data
applications, e.g., MicroBench and search engine. In our work, we use three different
workloads to evaluate our strategy: RandomWriter, Sort, and WordCount.

Table 2. VMs’ locations in the experimental environment
Rack Physical Host Virtual Nodes

Rack1

PM1 NameNode
PM2 DataNode1 DataNode2 DataNode3
PM3 DataNode4
PM4 DataNode5
PM5 DataNode6 DataNode7 DataNode8

Rack2

PM6 DataNode9 DataNode10
PM7 DataNode11
PM8 DataNode12 DataNode13 DataNode14
PM9 DataNode15 DataNode16

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 219

Fig. 6. Data reliability after initial data
block allocation (higher is better)

Fig. 7. Data reliability after data
recovery (higher is better)

4.2.2 Data Reliability
Firstly, we use RandomWriter to generate data sets and write them to HDFS under DDBAS

and LDBAS. We generate different data sets with size: 4GB, 8GB, and 16GB. The block size
is set to 64MB, and the replication factor is 3. We count the proportion of file blocks with 3
replicas across different PMs. Fig. 6 shows that under the original strategy 29.7% of data
blocks on average cloud not achieve the expected data reliability. These blocks only have two
or even one different replicas across different physical nodes. With our new strategy, 100% of
file blocks could be allocated with 3 different replicas across PMs in the cloud, which means
the same data reliability in the physical environments.

Then, we simulate the failure of DataNodes by disabling the network card. Then we check

the data reliability after using different recovery algorithms. The evaluation result is shown in
Fig. 7. As illustrated, the data reliability is very low (70%) after the default recovery
algorithm, no matter under DDBAS or our LDBAS. Through our new recovery algorithm
under LDBAS, data reliability can achieve the same result as in the physical environment. This
proves the effectiveness of our new data block recovery algorithm for data reliability.

4.2.3 Time Cost of Algorithms
We evaluate the time cost of our algorithm in the runtime environment of actual Hadoop

cluster. We record the allocation time for each data block in the source code of HDFS and
writing them into the logs. The result is shown in Fig. 8. We can find that LDBAS only costs
about twice of the time of DDBAS, which is about 1.5 to 2 milliseconds. In addition, the time
cost increases slowly along with the increase in data size. It shows that LDBAS can respond a
request for writing a data block within the acceptable time in the actual runtime environments.

220 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

Fig. 9. STD-EPT after initial data block
allocation in runtime of HDFS (lower is better)

Fig. 10. STD-EPT after data recovery in
runtime of HDFS (lower is better)

Fig. 8. Time cost for allocating each data block in runtime of HDFS (lower is better)

4.2.4 Standard Deviation of Estimated Processing Time
Similar to the simulation experiment, we analyze the standard deviation of estimated

processing time (STD-EPT) for local data blocks in the actual runtime of Hadoop cluster, and
then we show the effect of performance for data processing applications in next subsection.
Fig. 9 shows the results after the initial data block allocation under the default data block
allocation strategy (DDBAS) and our new strategy (LDBAS). We can find that the STD-EPT
under DDBAS is larger than STD-EPT under our new strategy, which means there may be
more remote map tasks in the data processing applications and longer job completion time.

To evaluate our new data recovery algorithm for the performance of data processing

applications, we record the STD-EPT under different recovery algorithms as shown in Fig. 10.
The left two bars for each data size show that the default recovery algorithm will lead to the
worse data distribution. LDBAS with both the default recovery and new recovery can
achieve better performance, because of the good distribution of the initial allocation with
LDBAS. However, new data recovery cannot achieve the expected STD-EPT as small as the
STD-EPT after the initial allocation (which is about 1 second in Fig. 9. The reason is that the
choices of the new replicas are limited to the locations of the live replicas of data blocks for
data reliability, which makes it hard to distribute the data block to achieve the minimum
STD-EPT in theory.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 221

4.2.5 Performance Effect for Data Processing Applications
In order to verify the performance effect for real-world data processing applications, we test

two typical benchmark experiments includes Sort and WordCount. Then we evaluate the
performance through the metrics of the number of local map tasks and the job execution time.

Sort: Sort is a typical I/O-intensive application. After writing data sets to HDFS under
different strategies, we run the Sort application to evaluate the performance change with our
strategy. There are three data sets: 4GB, 8GB, and 16GB, which indicates 65, 129 and 257
map tasks for corresponding data sets. We run 10 times for each group experiment. Then we
count the mean of the number of local map tasks and total job execution time.

The results show LDBAS can increase the number of local map tasks and reduce the total
job execution time as shown in Fig. 11 (a) and (b). We improve the proportion of local map
tasks from 92.3% to 94.4% on average. Moreover, when the proportion is lower, we could
improve the proportion by up to about 5%, for instance when data size is 4GB. More local map
tasks mean fewer remote executions and less network traffic. Eventually, our strategy could
reduce the total job execution time by 8.9% on average and up to 11.2% for the I/O-intensive
applications such as Sort.

Fig. 11. Performance effect for Sort

WordCount: WordCount is a typical CPU-intensive application. In the same way, after

writing data to HDFS under different strategies, we run the WordCount application for 10
times, and then measure the number of local map tasks and the total job execution time. The
results show that our new strategy could only reduce the job execution time by 2.8% on
average for the CPU-intensive applications as shown in Fig. 12(b). However, we still can
increase the number of local map tasks as shown in Fig. 12(a), which can contribute to
reducing the network overhead in the whole cluster.

222 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

Fig. 12. Performance effect for WordCount

5. Discussion
Application workloads: LDBAS concentrates on improving the performance of
I/O-intensive applications, so we consider disk I/O bandwidth as the processing capacities of
nodes. In Hadoop, the compute capabilities can be represented by the number of map slots and
reduce slots, or the value of cores and memory of NodeManager under Yarn [22]. However,
the difference of disk I/O capacity in the heterogeneous cloud environments is greater than in
the homogeneous physical environments, which has not been reflected clearly yet and
seriously affects the performance of Hadoop in the cloud. The experimental results
demonstrate the significance of this consideration. In addition, processing capacity can be a
general configuration to represent some other metrics such as compute capacity and network
capacity for other particular purposes.
Location information: The location information is an important precondition of LDBAS. We
provide two methods to obtain the location information of a virtual cluster for two different
roles in the cloud respectively (the cloud vendors and the cloud users). (1) If the cloud vendors
would like to adopt our new strategy to improve their cloud services of Hadoop (i.e. Amazon
Elastic MapReduce) for cloud users, they can obtain the location information with ease. Since
they hold the whole network topology information, they can provide the relative location
information of a virtual cluster, when they initialize the virtual Hadoop cluster for the cloud
users. (2) If the cloud vendors would not like to adopt our new strategy and not expose the
relative location information, the cloud users can still use our strategy to improve the virtual
Hadoop cluster, when they rent the virtual machines and build the virtual Hadoop cluster by
themselves. In this case, the cloud users have to infer the network topology through some
schemes of network topology inference [12][13] without the help of cloud vendors. They can
probe the latencies (e.g. round-trip time, RTT) between two VMs by simply using the
commands ping. After getting all the RTTs between any two VMs, they can cluster the RTTs.
Since the RTTs between two VM pairs with the same distance are always close, and the RTTs
are significantly different between two VM pairs with different network distances [12], they
can identify the relative locations between two VMs such as shown in Table 1.
Measurement of the Processing Capacity: In the experimental evaluation, we measure the
processing capacity (PC) and configure it as a static value after the virtual cluster has been
already initialized. Since the nodes inside Hadoop cluster always work together, we control all
VMs to run the benchmark suite Hdparm at the same time. Then, we can get the ratio of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 223

sequential read bandwidth as PC for all VMs. However, the PC of a VM may vary along with
the number change of VMs inside the same PM over time. Hence, we suggest to dynamically
adjust the processing capacity to reflect the real variability in the cloud environments, if
someone applies LDBAS into the practical applications. For example, we suggest to
periodically measure the PC by using the benchmark tools when the virtual cluster is idle.
Alternatively, we suggest to record the actual PCs with the running processing of all VMs,
then periodically reconfigure the value of PCs by analyzing the history records.
VM migration. In our strategy, we assume each DataNode and Tasktracker of Hadoop are in
the same node, which can benefit from the data locality. Hence, we assume the nodes in virtual
Hadoop will not be migrated by the cloud providers. If two VMs in two different PMs are
migrated into the same PM, there will be data reliability loss. Fortunately, VM migration for
this kind of VMs is not common in the cloud. This is because the data storage for Hadoop in
the cloud is usually at local in the physical machine. It does not need multi-copies in the shared
storage, as there is already the guarantee of data reliability in the level of HDFS. As a result,
VM migration is extremely costly for this kind of VMs, due to the high cost of migrating the
huge amount of local storage volume.

6. Related Work
Our work is related to the methods of optimizing Hadoop in the cloud. We categorize the
existing approaches as the following.

Exploring a preferable data block allocation strategy in HDFS [6][17][18]. Geng et al.
[6] observed the problems caused by the co-location of VMs and designed an improved file
block allocation scheme. However, they only consider the situation that each PM hosts the
same number of VMs, which is not universal in practical cloud systems. Our work addresses
the similar problems but considers a more common scenario, which can adapt to various kinds
of virtual topology. Hence, we realize the heterogeneity of processing capacity between VMs
in the cloud environments as we explained in Section 2. Lei [17] proposed CRAVE, which
focuses on exploring how to distribute data blocks according to the network bandwidth
between virtual nodes, in order to improve the performance of the shuffle operation in Hadoop.
Nevertheless, their block allocation strategy can’t solve the problem of data reliability.
VMware’s project Serengeti [18] addressed the problem of data reliability, which introduced
NodeGroup to the guarantee replicas are in different fault domains. However, it can not solve
the problem of performance degradation caused by the heterogeneity of VMs in the cloud.

Improving the task scheduling of Hadoop. [7][24] proposed some task schedulers to
enhance the success ratio of the backup tasks and eventually improve the performance of
Hadoop in the heterogeneous cloud environments. We focus on improving the data locality of
the map tasks, hence LDBAS may be able to cooperate with this category of approaches.

Improving the infrastructure service in the cloud to adapt to the characteristics of
Hadoop applications. DRR [19], a dynamic VM reconfiguration technique for data-intensive
computing in the cloud, was proposed to adjust the computing capability of individual VMs to
improve the data locality for Hadoop running in the cloud. A dynamic block device
reconfiguration algorithm was proposed by Kwonyong et al. [20] to reduce the data transfer
time between VMs and thereby improving the performance of virtual MapReduce clusters in
the cloud. Different from these studies, our work attempts to achieve the better data block
distribution to improve the data locality and the performance of Hadoop in the cloud. Besides,
we could solve the problem of data reliability loss which is not addressed by these approaches.

224 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

7. Conclusion
In this paper, we address the problems of data reliability loss and performance degradation for
Hadoop in the cloud, which are mainly caused by the co-location of VMs. In general, the
co-location of VMs can not be avoided in most cases. Hence, we propose a novel
location-aware data block allocation strategy (LDBAS) to improve the performance while
guaranteeing the data reliability for HDFS-based applications in the cloud. LDBAS allocates
data blocks according to the locations and processing capacities of VMs to increase the
number of local map tasks. We apply LDBAS for the initial data block allocation and the data
recovery in HDFS. The experimental results demonstrate that LDBAS can improve the
proportion of file blocks with the expected data reliability by from 70% to 100%. Moreover,
for the I/O-intensive applications in Hadoop, we can reduce the total execution time by 8.9%
on average and up to 11.2%. In addition, LDBAS can respond a request for writing one data
block within an acceptable time in the actual Hadoop runtime. Though our strategy is based on
Hadoop, we believe that LDBAS can also benefit Spark and other HDFS-based applications,
since HDFS is a fundamental support system of MapReduce-like frameworks.

References
[1] Min Chen, Shiwen Mao, and Yunhao Liu, “Big data: A survey,” Mobile Networks and

Applications, vol. 19, no. 2, pp. 171-209, April, 2014. Article (CrossRef Link)
[2] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: simplified data processing on large

clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008. Article (CrossRef Link)
[3] Hadoop. Article (CrossRef Link).
[4] Peter Mell, and Tim Grance, “The NIST definition of cloud computing,” Technical Report, 2011.

Article (CrossRef Link)
[5] Amazon EMR. Article (CrossRef Link).
[6] Yifeng Geng, et al., “Location-aware mapreduce in virtual cloud,” In Proc. of International Conf.

on Parallel Processing, pp. 275-284, September 13-16, 2011. Article (CrossRef Link)
[7] Matei Zaharia, et al., “Improving MapReduce performance in heterogeneous environments,” in

Proc. of 8th USENIX conf. on Operating systems design and implementation, vol. 8, no. 4, pp.
29-42, December 8-10, 2008.

[8] Konstantin Shvachko, et al., “The hadoop distributed file system,” in Proc. of 26th symposium on
Mass storage systems and technologies, pp. 1-10, May 3-7, 2010. Article (CrossRef Link)

[9] Matei Zaharia, et al., “Spark: Cluster computing with working sets,” in Proc. of 2nd USENIX conf.
on Hot topics in cloud computing, vol. 10, pp. 10-10, June 22-25, 2010.

[10] Sherif Sakr, Anna Liu, and Ayman G. Fayoumi, “The family of mapreduce and large-scale data
processing systems,” ACM Computing Surveys, vol. 46, no.1, pp. 11, October, 2013.
Article (CrossRef Link)

[11] OpenStack Sahara. Article (CrossRef Link).
[12] Dominic Battré, et al., “Evaluation of network topology inference in opaque compute clouds

through end-to-end measurements,” in Proc. of International Conf. on Cloud Computing, pp.
17-24, July 4-9, 2011. Article (CrossRef Link)

[13] Mark Coates, et al., “Maximum likelihood network topology identification from edge-based
unicast measurements,” ACM SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp.
11-20, June, 2002. Article (CrossRef Link)

[14] Jeffrey Shafer, “I/O virtualization bottlenecks in cloud computing today,” in Proc. of 2nd Conf. on
I/O virtualization, pp. 5-5, 2010.

[15] Lei Wang, et al., “Bigdatabench: A big data benchmark suite from internet services,” in Proc. of
20th International Symposium on High Performance Computer Architecture, pp. 488-499,
February 15-19, 2014. Article (CrossRef Link)

https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1145/1327452.1327492
http://hadoop.apache.org/
https://dx.doi.org/10.6028/NIST.SP.800-145
http://aws.amazon.com/cn/elasticmapreduce
https://doi.org/10.1109/ICPP.2011.40
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/2522968.2522979
https://wiki.openstack.org/wiki/Sahara/
https://dx.doi.org/10.1109/CLOUD.2011.30
https://dx.doi.org/10.1145/511334.511337
https://doi.org/10.1109/HPCA.2014.6835958

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 225

[16] Kento Aida, et al., “Evaluation on the performance fluctuation of hadoop jobs in the
cloud,” in Proc. of 16th International Conf. on Computational Science and Engineering, pp.
159-166, December 3-5, 2013. Article (CrossRef Link)

[17] Lei Lei, “Towards a high performance virtual hadoop cluster,” Journal of Convergence
Information Technology, vol. 7, no. 6, 2012.

[18] VMware Serengeti. Article (CrossRef Link).
[19] Jongse Park, et al. “Locality-aware dynamic VM reconfiguration on MapReduce clouds,” in Proc.

of 21st international symposium on High-Performance Parallel and Distributed Computing, pp.
27-36, June 18-22, 2012. Article (CrossRef Link)

[20] Kwonyong Lee, et al., “A dynamic block device reconfiguration algorithm in virtual MapReduce
cluster,” Cluster computing, vol. 17, no. 4, pp. 1171-1183, 2014. Article (CrossRef Link)

[21] Hua Xu, et al, “Location-Aware Data Block Allocation Strategy for HDFS-Based Applications in
the Cloud,” in Proc. of 9th International Conf. on Cloud Computing, pp. 252-259, June 27-July 2,
2016. Article (CrossRef Link)

[22] Vinod Kumar Vavilapalli, et al., “Apache hadoop yarn: Yet another resource negotiator,” in Proc.
of 4th annual Symposium on Cloud Computing, pp. 5, October 1-3, 2013. Article (CrossRef Link)

[23] Changqing Ji, et al, “Big data processing in cloud computing environments,” in Proc. of 12th
International Symposium on Pervasive Systems, Algorithms and Networks, pp. 17-23, December
13-15, 2012. Article (CrossRef Link)

[24] Shin-Jer Yang and Yi-Ru Chen, “Design adaptive task allocation scheduler to improve
MapReduce performance in heterogeneous clouds,” Journal of Network and Computer
Applications, vol. 57, pp. 61-70, November, 2015. Article (CrossRef Link)

https://doi.org/10.1109/CSE.2013.34
https://github.com/vmware-serengeti/serengeti-ws
https://doi.org/10.1145/2287076.2287082
https://doi.org/10.1007/s10586-014-0375-y
https://doi.org/10.1109/CLOUD.2016.0042
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1109/I-SPAN.2012.9
https://doi.org/10.1016/j.jnca.2015.07.012

226 Xu et al.: LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

Hua Xu received the B.E. degree in Computer Science and Technology from the University
of Science and Technology of China (USTC) in 2012. He is currently a Ph.D. student in the
Department of Computer Science and Technology in USTC. His research interests include
distributed systems, cloud computing, and big data processing.

Weiqing Liu received the B.E. degree in Computer Science and Technology from the
University of Science and Technology of China (USTC) in 2011. He is currently a Ph.D.
student in the Department of Computer Science and Technology in USTC. His research
interests include cloud computing, mobile computing, and big data processing.

Guansheng Shu received the B.E. degree from Jilin University (JLU) in 2011. He is
currently a Ph.D. student in the Department of Computer Science and Technology in USTC.
His research interests include cloud computing, mobile computing, and big data processing.

Jing Li received his B.E. degree in Computer Science from the University of
Science and Technology of China (USTC) in 1987, and Ph.D. in Computer Science
from USTC in 1993. Now he is a professor in the Department of Computer Science
and Technology in USTC. His research interests include distributed systems, cloud
computing, big data processing, and mobile cloud computing.

