DOI QR코드

DOI QR Code

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng (Institute of Structural Engineering, College of Civil Engineering & Architecture, Zhejiang University) ;
  • Li, Qiang (Institute of Structural Engineering, College of Civil Engineering & Architecture, Zhejiang University) ;
  • Xu, Haiwei (Institute of Structural Engineering, College of Civil Engineering & Architecture, Zhejiang University) ;
  • Lou, Wenjuan (Institute of Structural Engineering, College of Civil Engineering & Architecture, Zhejiang University) ;
  • Lin, Ning (Department of Civil and Environmental Engineering, Princeton University)
  • Received : 2017.10.18
  • Accepted : 2018.01.13
  • Published : 2018.03.25

Abstract

Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Aboshosha, H., Bitsuamlak, G. and Damatty, A.E. (2015), "Turbulence characterization of downbursts using LES", J. Wind Eng. Ind. Aerod., 136(136), 44-61. https://doi.org/10.1016/j.jweia.2014.10.020
  2. Aboshosha, H. and Damatty, A.E. (2015), "Engineering method for estimating the reactions of transmission line conductors under downburst winds", Eng. Struct., 99, 272-284. https://doi.org/10.1016/j.engstruct.2015.04.010
  3. AIJ-RLB (2004), Recommendations for loads on buildings. Architectural Institute of Japan, Tokyo.
  4. Ashcroft, J. (1994), "The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed", J. Wind Eng. Ind. Aerod., 53(3), 331-355. https://doi.org/10.1016/0167-6105(94)90090-6
  5. BS EN 1991-1-4 (2005), Eurocode 1: Actions on Structures - Part 1-4: General actions - Wind Actions, European Committee for Standardization, British Standards Institution, London.
  6. Chen, K., Jin, X.Y. and Qian, J.H. (2012), "Calculation method on the reference wind pressure accounting for the terrain variations", Acta Sci. Nat. Univ. Pekin., 48(1), 13-19 (in Chinese).
  7. Coles, G.S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer, New York.
  8. Cook, N.J. (1985), The Designer's Guide to Wind Loading on Building Structures. Part I: Background, Damage Survey, Wind Data, and Structural Classification. Building Research Establishment, Watford.
  9. Cook, N.J. and Harris, R.I. (2004), "Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents", Struct. Saf., 26(4), 391-420. https://doi.org/10.1016/j.strusafe.2004.01.002
  10. Chen, L. (2005), Vector time-varying autoregressive (TVAR) models and their application to downburst wind speeds, Ph.D. Dissertation, Texas Tech University.
  11. Dyrbye, C. and Hansen, S.O. (1996), Wind Loads on Structures. John Wiley & Sons, New York.
  12. El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy, R. and Bobee, B. (2007), "Generalized maximum likelihood estimators for the non-stationary generalized extreme value model", Water Resour. Res., 43(3).
  13. GB 50009-2012. Load Code for the Design of Building Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China. China Architecture & Building Press (in Chinese).
  14. Gilbert, R.O. (1987), Statistical Methods for Environmental Pollution Monitoring, Wiley, NY.
  15. Harris, R.I. (2009), "XIMIS, a penultimate extreme value method suitable for all types of wind climate", J. Wind Eng. Ind. Aerod., 97(5-6), 271-286. https://doi.org/10.1016/j.jweia.2009.06.011
  16. Harris, R.I. and Cook, R.J. (2014), "The parent wind speed distribution: Why Weibull?", J. Wind Eng. Ind. Aerod., 131, 72-87. https://doi.org/10.1016/j.jweia.2014.05.005
  17. Holmes, J.D. and Moriarty, W.W. (1999), "Application of the generalized Pareto distribution to extreme value analysis in wind engineering", J. Wind Eng. Ind. Aerod., 83(1), 1-10. https://doi.org/10.1016/S0167-6105(99)00056-2
  18. Hosking, J.R.M. (1985), "Algorithm AS 215: Maximumlikelihood estimation of the parameters of the generalized extreme-value distribution", J. Roy. Stat. Soc. Series C (Applied Statistics), 34(3), 301-310.
  19. Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985), "Estimation of the generalized extreme-value distribution by the method of probability-weighted moments", Technometrics, 27(3), 251-261. https://doi.org/10.1080/00401706.1985.10488049
  20. Hundecha, Y., St-Hilaire, A., Ouarda, T.B.M.J., El Adlouni, S. and Gachon, P. (2008), "A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence", Can. J. Appl. Meteorol. Clim., 47(11), 2745-2759. https://doi.org/10.1175/2008JAMC1665.1
  21. Huang, G. and Chen, X. (2009), "Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds", Eng. Struct., 31(4), 976-989. https://doi.org/10.1016/j.engstruct.2008.12.010
  22. Huang, G., Zheng, H., Xu, Y.L. and Li, Y. (2015), "Spectrum models for nonstationary extreme winds", J. Struct. Eng., 141(10), 04015010. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001257
  23. Jiang, Y., Luo, Y., Zhao, Z. and Tao, S. (2010), "Changes in wind speed over China during 1956-2004", Theor. Appl. Climatol., 99(3-4), 421-430. https://doi.org/10.1007/s00704-009-0152-7
  24. Kasperski, M. (2009), "Specification of the design wind load-A critical review of code concepts", J. Wind Eng. Ind. Aerod., 97(7-8), 335-357. https://doi.org/10.1016/j.jweia.2009.05.002
  25. Katz, R.W., Parlange, M.B. and Naveau, P. (2002), "Statistics of extremes in hydrology", Adv. Water Resour., 25(8), 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  26. Kendall, M.G. (1975), Rank Correlation Methods, 4th Ed., Charles Griffin, London.
  27. Kharin, V.V. and Zwiers, F.W. (2005), "Estimating extremes in transient climate change simulations", J. Climate, 18(8), 1156-1173. https://doi.org/10.1175/JCLI3320.1
  28. Li, Z.X., He, Y., Wang, P., Theakstone, W. H., An, W., Wang, X. and, Cao, W. (2012), "Changes of daily climate extremes in southwestern China during 1961-2008", Global and Planetary Change, 80, 255-272.
  29. Lombardo, F.T., Main, J.A. and Simiu, E. (2009), "Automated extraction and classification of thunderstorm and nonthunderstorm wind data for extreme-value analysis", J. Wind Eng. Ind. Aerod., 97(3), 120-131. https://doi.org/10.1016/j.jweia.2009.03.001
  30. Lombardo, F.T. (2012), Improved extreme wind speed estimation for wind engineering applications. J. Wind Eng. Ind. Aerod., 104-106, 278-284. https://doi.org/10.1016/j.jweia.2012.02.025
  31. Lombardo, F.T. (2014), "Extreme wind speeds from multiple wind hazards excluding tropical cyclones", Wind Struct., 19(5), 467-480. https://doi.org/10.12989/was.2014.19.5.467
  32. Lombardo, F.T. and Ayyub, B.M. (2015), "Analysis of Washington, DC, wind and temperature extremes with examination of climate change for engineering applications. ASCE-ASME", J. Risk Uncertainty in Eng. Syst., Part A: Civil Eng., 1(1), 04014005.
  33. Lombardo, F.T. and Krupar III, R.J. (2016), "A comparison of aerodynamic roughness length estimation methods for use in characterizing surface terrain conditions", submitted to J. Struct. Eng.
  34. Macleod, A.J. (1989), "A remark on algorithm AS 215: Maximumlikelihood estimation of the parameters of the generalized extreme-value distribution", Appl. Statist., 38(1), 198-199. https://doi.org/10.2307/2347695
  35. Mann, H.B. (1945), "Non-parametric tests against trend", Econometrica, 13,163-171.
  36. Martins, E.S. and Stedinger, J.R. (2000), "Generalized maximumlikelihood generalized extreme-value quantile estimators for hydrologic data", Water Resour. Res., 36(3), 737-744. https://doi.org/10.1029/1999WR900330
  37. Masters, F.J., Tieleman, H.W. and Balderrama, J.A. (2010a), "Surface wind measurements in three gulf coast hurricanes of 2005", J. Wind Eng. Ind. Aerod., 98(10-11), 533-547. https://doi.org/10.1016/j.jweia.2010.04.003
  38. Masters, F.J., Vickery, P.J., Bacon, P. and Rappaport, E.N. (2010b), "Toward objective, standardized intensity estimates from surface wind speed observations", Bull. Am. Meteorol. Soc., 91(12), 1665-1681. https://doi.org/10.1175/2010BAMS2942.1
  39. Miller, C., Balderrama, J.A. and Masters, F. (2015), "Aspects of observed gust factors in landfalling tropical cyclones: gust components, terrain, and upstream fetch effects", Bound.- Lay. Meteorol., 155(1), 1-27. https://doi.org/10.1007/s10546-014-9986-3
  40. Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in China using surface wind observations and reanalysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. https://doi.org/10.1016/j.jweia.2015.04.005
  41. Pagnini, L.C. and Solari, G. (2015), "Joint modeling of the parent population and extreme value distributions of the mean wind velocity", J. Struct. Eng., 142(2), 04015138
  42. Palutikof, J.P., Brabson, B.B., Lister, D.H. and Adcock, S.T. (1999), "A review of methods to calculate extreme wind speeds", Meteorol. Appl., 6(2), 119-132. https://doi.org/10.1017/S1350482799001103
  43. Pavia, E.G. and O'Brien, J.J. (1986), "Weibull statistics of wind speed over the ocean", J. Clim. Appl. Meteorol., 25(10), 1324-1332. https://doi.org/10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2
  44. Ruest, B., Neumeier, U., Dumont, D., Bismuth, E., Senneville, S. and Caveen, J. (2016), "Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence", Can. Clim. Dynam., 46(1-2), 449-466. https://doi.org/10.1007/s00382-015-2592-3
  45. Sacre, C., Moisselin, J.M., Sabre, M., Flori, J.P. and Dubuisson, B. (2007), "A new statistical approach to extreme wind speeds in france", J. Wind Eng. Ind. Aerod., 95(9-11), 1415-1423. https://doi.org/10.1016/j.jweia.2007.02.013
  46. Simiu, E. and Heckert, N.A. (1996), "Extreme wind distribution tails: a "peaks over threshold" approach", J. Struct. Eng., 122(5), 539-547. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:5(539)
  47. Smith, R.L. (1985), "Maximum likelihood estimation in a class of non-regular cases", Biometrika, 72(1), 67-90. https://doi.org/10.1093/biomet/72.1.67
  48. Solari, G., Repetto, M. P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M. and Parodi, M. (2012), "The wind forecast for safety management of port areas", J. Wind Eng. Ind. Aerod., 104, 266-277.
  49. Su, Y., Huang, G. and Xu Y. (2015), "Derivation of time-varying mean for non-stationary downburst winds", J. Wind Eng. Ind. Aerod., 141, 39-48. https://doi.org/10.1016/j.jweia.2015.02.008
  50. Tuller, S.E. and Brett, A.C. (1984), "The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis", J. Clim. Appl. Meteorol., 23(1), 124-134. https://doi.org/10.1175/1520-0450(1984)023<0124:TCOWVT>2.0.CO;2
  51. World meteorological organization (2012), Guide to Meteorological Instruments and Methods of Observation. Secretariat of the World Meteorological Organization.
  52. Xu, M., Chang, C.P., Fu, C., Qi, Y., Robock, A., Robinson, D. and Zhang, H.M. (2006), "Steady decline of east Asian monsoon winds, 1969-2000: Evidence from direct ground measurements of wind speed", J. Geophys. Res: Atmos., 111(D24).
  53. Xu, Y.L., Hu, L. and Kareem, A. (2014), "Conditional simulation of nonstationary fluctuating wind speeds for long-span bridges", J. Eng. Mech., 140(1), 61-73. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000589
  54. Yan, Z., Bate, S., Chandler, R.E., Isham, V. and Wheater, H. (2006), "Changes in extreme wind speeds in NW Europe simulated by generalized linear models", Theor. Appl. Climatol., 83(1-4), 121-137. https://doi.org/10.1007/s00704-005-0156-x
  55. Yang, X., Li, Z., Feng, Q., He, Y., An, W., Zhang, W. et al. (2012), "The decreasing wind speed in southwestern china during 1969-2009, and possible causes", Quaternary Int., 263(3), 71-84. https://doi.org/10.1016/j.quaint.2012.02.020
  56. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y. et al. (2014), "An overview of the China Meteorological Administration tropical cyclone database", J. Atmos. Oceanic Technol., 31(2), 287-301. https://doi.org/10.1175/JTECH-D-12-00119.1
  57. You, Q., Kang, S., Aguilar, E., Pepin, N., Flugel, W. A., Yan, Y. and Huang, J. (2011), "Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003", Clim. Dynam., 36(11-12), 2399-2417. https://doi.org/10.1007/s00382-009-0735-0
  58. Zhang, X., Zwiers, F.W. and Li, G. (2004), "Monte Carlo experiments on the detection of trends in extreme values", J. Climate, 17(10), 1945-1952. https://doi.org/10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2
  59. Zwiers, F.W. and Kharin, V.V. (1998), "Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling", J. Climate, 11(9), 2200-2222. https://doi.org/10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2