DOI QR코드

DOI QR Code

Study of the Curing Reaction Rate of a Glass Fiber Reinforced Bisphenol-A (BPA) Epoxy Prepreg by Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC)를 이용한 유리섬유 Bisphenol-A(BPA)계 에폭시 프리프레그의 경화 반응 속도 연구

  • Kwon, Hyeon-Jin (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Hee-Jung (Western Seoul Center Korea Basic Science Institute) ;
  • Lee, Eun-Ju (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Ku, Sang-Min (R&D Center, ESCO RTS. Co., Ltd.) ;
  • Kim, Seon-Hong (R&D Center, ESCO RTS. Co., Ltd.) ;
  • Lee, Kee-Yoon (Department of Organic Materials Engineering, Chungnam National University)
  • Received : 2017.12.28
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

The curing behavior of glass fiber reinforced epoxy prepregs based on Bisphenol-A (BPA) was studied by differential scanning calorimetry (DSC). The total heat of reaction(${\Delta}H_{total}=280.3J/g$) was determined based on the results of the dynamic heating scanning experiments. Isothermal experiments were carried out at $110{\sim}130^{\circ}C$, and it was observed that the maximum conversion and the maximum reaction rate were increased as temperature increased. Also Kamal equation was applied to analyze autocatalytic reaction of epoxy prepregs. The higher temperatures, the greater reaction rate constants ($k_1$, $k_2$). Theoretical values were calculated by these reaction rate constants and compared with experimental values. And it was confirmed that they were in reasonable agreement. At the beginning of the reaction, the experimental data and theoretical prediction were shown the same tendency, but at the end of reaction, the experimental data were smaller than theoretical predicted values due to reaction rates controlled by diffusion.

본 연구에서는 시차주사열량계(differential scanning calorimetry, DSC)를 이용하여 유리섬유로 보강된 BPA계 에폭시 프리프레그의 경화 거동을 확인하였다. 기지재로 사용된 에폭시 수지의 전체 발열량(${\Delta}H_{total}=280.3J/g$)을 측정하기 위해 승온 실험을 하였다. $110{\sim}130^{\circ}C$ 등온 조건에서 측정된 발열량을 통해 높은 온도 조건일수록 최대 전환율과 최대 반응 속도가 증가하는 것을 확인하였다. 또한, 에폭시 프리프레그의 자기 촉매 반응을 해석하기 위해 Kamal 방정식을 적용하였으며 높은 온도 조건에서 반응 속도 상수($k_1$, $k_2$)가 큰 값으로 나타났다. 이때 얻어진 반응 속도 상수를 이용해 계산한 이론 추정치와 실험치를 비교한 결과 잘 부합하는 것을 확인하였다. 반응 초기에는 두 값이 유사하나 반응이 최종 단계에서는 반응 속도가 확산에 의해 결정되는 현상으로 인해 반응 속도의 실험치가 이론 추정치보다 더 작은 반응 속도 값을 가짐을 확인하였다.

Keywords

References

  1. Park, S.J., Jin, F.L., Lee, J.R., and Shin, J.S., "Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System," Polymer (Korea), Vol. 27, No. 1, 2003, pp. 33-39.
  2. Hayaty, M., Beheshty, M.H., and Esfandeh, M., "Cure Kinetics of a Glass/Epoxy Prepreg by Dynamic Differential Scanning Calorimetry," Journal of Applied Polymer Science, Vol. 120, No. 1, 2011, pp. 62-69. https://doi.org/10.1002/app.32982
  3. Xie, H., Liu, B., Yuan, Z., Shen, J., and Cheng, R., "Cure Kinetics of Carbon Nanotube/Tetrafunctional Eoxy Nanocomposites by Isothermal Differential Scanning Calorimetry," Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, No. 20, 2004, pp. 3701-3712. https://doi.org/10.1002/polb.20220
  4. Rosso, P., Ye, L., Friedrich, K., and Sprenger, S., "A Toughened Epoxy Resin by Silica Nanoparticle Reinforcement," Journal of Applied Polymer Science, Vol. 100, No. 3, 2006, pp. 1849-1855. https://doi.org/10.1002/app.22805
  5. Paiva, J.M.F., Mayer, S., and Rezende, M.C., "Comparison of Tensile strength of Different Carbon Fabric Reinforced Epoxy Composites," Materials Research, Vol. 9, No. 1, 2006, pp. 83-89. https://doi.org/10.1590/S1516-14392006000100016
  6. Na, H.Y., Yeom, H.Y., Yoon, B.C., and Lee, S.J., "Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin," Polymer (Korea), Vol. 38, No. 2, 2014, pp. 171-179. https://doi.org/10.7317/pk.2014.38.2.171
  7. Musto, P., Martuscelli, E., Ragosta, G., Russo, P., and Villano, P., "Tetrafunctional Epoxy Resins: Modeling the Curing kinetics Based on FTIR Spectroscopy Data," Journal of Applied Polymer Science, Vol. 74, No. 3, 1999, pp. 532-540. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<532::AID-APP8>3.0.CO;2-Q
  8. Sun, L., Pang, S.S., Sterling, A.M., Negulescu, I.I., and Stubblefield, M.A., "Dynamic Modeling of Curing Process of epoxy prepreg," Journal of Applied Polymer Science, Vol. 86, No. 8, 2002, pp. 1911-1923. https://doi.org/10.1002/app.11146
  9. Chike, K.E., Myrick, M.L., Lyon, R.E., and Angel, S.M., "Raman and Near-Infrared Studies of an Epoxy Resin," Applied Spectroscopy, Vol. 47, No. 10, 1993, pp. 1631-1635. https://doi.org/10.1366/0003702934334714
  10. Barghamadi, M., "Kinetics and Thermodynamics of Isothermal Curing Reaction of Eoxy-4,4-Diaminoazobenzene Reinforced with Nanosilica and Nanoclay Particles," Polymer Composites, Vol. 31, No. 8, 2010, pp. 1442-1448. https://doi.org/10.1002/pc.20930
  11. Hayaty M., Beheshty, M.H., and Esfandeh, M., "Isothermal Differential Scanning Calorimetry Study of a Glass/epoxy Prepreg," Polymers for Advanced Technologies, Vol. 22, No. 6, 2011, pp. 1001-1006. https://doi.org/10.1002/pat.1607
  12. Ren, R., Xiong, X., Ma, X., Liu, S., Wang, J., Chen, P., and Zeng, Y., "Isothermal Curing Kinetics and Mechanism of DEGBA Epoxy Resin with Phthalide-containing Aromatic Diamine," Thermochimica Acta, Vol. 623, 2016, pp. 15-21. https://doi.org/10.1016/j.tca.2015.11.011
  13. Han, S., Yoon, H.G., Suh, K.S., Kim, W.G., and Moon, T.J., "Cure Kinetics of Bisphenyl Epoxy-Phenol Novolac Resin System Using Triphenylphosphine as Catalyst," Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 7, No. 6, 1999, pp. 713-720.
  14. Mijovic, J., Kim, J., and Slaby, J., "Cure Kinetics of Epoxy Formulations of the Type Used in Advanced Composites," Journal of Applied Polymer Science, Vol. 29, No. 4, 1984, pp. 1449-1462. https://doi.org/10.1002/app.1984.070290437
  15. Hayaty, M., Honarkar, H., and Beheshty, M.H., "Curing Behavior of Dicyandiamide Epoxy Resin System Using Different Accelerators," Iran Polymer Journal, Vol. 22, No. 8, 2013, pp. 591-598. https://doi.org/10.1007/s13726-013-0158-y
  16. Kim, D.G., Park, H.J., and Lee, K.Y., "Study on Curing Behavior of Epoxy Acrylates by UV with and without Aromatic Component," Macromolecular Research, Vol. 23, No. 10, 2015, pp. 944-951. https://doi.org/10.1007/s13233-015-3130-1
  17. Levenspiel, O., Chemical Reaction Engineering, John Wiley & Sons Pub. Co., New York, USA, 1999.
  18. Barton, J.M., "The Application of Differential Scanning Calorimetry (DSC) to the Study of Epoxy Resin Curing Reactions," Advances in Polymer Sciences, Vol. 72, 2005, pp. 111-154.
  19. Kamal, M.R., and Sourour, S., "Kinetics and Thermal Characterization of Thermoset Cure," Polymer Engineering and Science, Vol. 13, No. 1, 1973, pp. 59-64. https://doi.org/10.1002/pen.760130110
  20. Sun, L., Pang, S.S., Sterling, A.M., Negulescu, I.I., and Stubblefield, M.A., "Thermal Analysis of Curing Process of Epoxy Prepreg," Journal of Applied Polymer Science, Vol. 83, No. 5, 2002, pp. 1074-7083. https://doi.org/10.1002/app.10053
  21. Kim, H.K., Eom, Y.S., Chung, K.M., Ahn, K.J., and Char, K.H., "A Study on Curing Process of Epoxy/Glass Fiber Prepregs," Polymer(Korea), Vol. 19, No. 3, 1995, pp. 265-275.
  22. Schmidt, L.D., The Engineering of Chemical Reactions, OXFORD pub. Co., New York, USA, 2005.
  23. Atkins, P., and Paula, J.K., Physical Chemistry, W. H. Freeman and Company Pub. Co., New York, USA, 2006.

Cited by

  1. 시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구 vol.33, pp.2, 2020, https://doi.org/10.7234/composres.2020.33.2.044