DOI QR코드

DOI QR Code

Synergistic Effect in Mechanical Properties of Sheet Molding Compound via Simultaneous Incorporation of Glass Fiber and Glass Bubble Fillers

유리섬유와 유리버블에 의한 Sheet Molding Compound 강도의 시너지 효과

  • Received : 2017.08.17
  • Accepted : 2018.02.05
  • Published : 2018.02.28

Abstract

Sheet molding compound (SMC) is one of the most economical fiber reinforced composite fabrication processing for automotive applications. In this study, we studied the optimum formulation for the production of SMC which shows low specific gravity without lowering the mechanical properties by using glass bubble (GB) which is a low specific gravity filler and glass fiber (GF) as a reinforcing material. The tensile strength increased with the increase of the GF in the SMC, and the specific gravity decreased with the increase of the GB. The synergistic effect of improving the mechanical properties as the specific gravity is lowered is found in the optimum formulation. The synergy effect was confirmed by the internal structure analysis that the dispersion effect of the crack propagation of the GB and the improvement of the binding force between the fiber and the matrix due to the incorporation of the GB.

섬유강화 복합재료 제조 방법 중 sheet molding compound(SMC)는 자동차에 적용 가능성이 가장 높은 소재이다. 본 연구에서는 저비중 필러인 유리버블과 강화재인 유리섬유를 사용하여 물성이 저하되지 않으면서 낮은 비중을 나타내는 SMC의 제조를 위한 최적의 배합비에 대해 연구하였다. SMC 내부에 유리섬유의 혼입양이 증가할수록 강도가 향상하였고, 유리버블의 혼입양이 증가할수록 비중이 낮아졌다. 최적의 배합에서는 비중이 낮아지면서 물성이 향상되는 시너지 효과가 나타남을 발견하였다. 이러한 시너지 효과는 유리버블의 크랙 전파의 분산효과와 유리버블의 혼입에 따른 섬유와 매트릭스의 결합력의 향상에 기인한 것임을 내부구조 분석을 통해 확인하였다.

Keywords

References

  1. Kim, E.K., Lee, Y., and Hwang, S.-H., "A Study on Preparation of Fast Cure and Low Density SMC," Journal of Korean Industrial and Engineering Chemistry, Vol. 7, No. 3, 1996, pp. 511-517.
  2. Kia, H.G., Sheet Molding Compounds Science and Technology, Hanser/gardner Pub. Inc., Ohio, USA, 1993.
  3. Boylan, S., and Castro, J.M., "Effect of Reinforcement Type and Length on Physical Properties, Surface Quality, and Cycle Time for Sheet Molding Compound (SMC) Compression Molded Parts," Jounal of Applied Polymer Science, Vol. 90, No. 928, 2003, pp. 2557-2571. https://doi.org/10.1002/app.12726
  4. Mehta, G., Mohanty, A.K., Thayer, K., Misra, M., and Drazal, L.T., "Novel Biocomposites Sheet Molding Compounds for Low Cost Housing Panel Applications", Journal of Polymers and the Environment, Vol. 13, No. 2, 2005, pp. 169-175. https://doi.org/10.1007/s10924-005-3211-x
  5. Kraemer, A., Lin, S., Brabandt, D., Böhlke, T., and Lanza, G., "Quality Control in the Production Process of SMC Lightweight Material," Procedia CIRP, Vol. 17, 2014, pp. 772-777. https://doi.org/10.1016/j.procir.2014.01.138
  6. Li, W., and Lee, L.J., "Shrinkage Control of Low-profile Unsaturated Polyester Resins Cured at Low Temperature," Polymer, Vol. 39, No. 23, 1998, pp. 5677-5687. https://doi.org/10.1016/S0032-3861(98)00074-3
  7. Hussain, M., Nakahira, A., and Niihara, K., "Mechanical Property Improvement of Carbon Fiber Reinforced Epoxy Composites by $Al_{2}O_{3}$ Filler Dispersion," Materials Letters, Vol. 26, No. 3, 1996, pp. 185-191. https://doi.org/10.1016/0167-577X(95)00224-3
  8. Ogasawara, T., Ishida, Y., and Kasai, T., "Mechanical Properties of Carbon Fiber/fullerene-dispersed Epoxy Composites," Composites Science and Technology, Vol. 69, No. 11-12, 2009, pp. 2002-2007. https://doi.org/10.1016/j.compscitech.2009.05.003
  9. Jiang, Z., Zhang, H., Zhang, Z., Murayama, H., and Okamoto, K., "Improved Bonding between PAN-based Carbon Fibers and Fullerene-modified Epoxy Matrix," Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 11, 2008, pp. 1762-1767. https://doi.org/10.1016/j.compositesa.2008.08.005
  10. Piggott, M.R., "Why Interface Testing by Single-fibre Methods Can be Misleading," Composites Science and Technology, Vol. 57, No. 8, 1997, pp. 965-974. https://doi.org/10.1016/S0266-3538(97)00036-5

Cited by

  1. SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발 vol.34, pp.1, 2021, https://doi.org/10.7234/composres.2021.34.1.070
  2. 인공신경망 기반 SMC 복합재료의 충돌 손상 해석을 위한 파라메터 획득 vol.34, pp.2, 2018, https://doi.org/10.7234/composres.2021.34.2.115