References
- Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R.A., Rocken, C., and Ware, R.H. (1994), GPS meteorology - mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology, Vol. 33, pp. 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
- Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., and Ware, R.H. (1992), GPS meteorology - remotesensing of atmospheric water-vapor using the global positioning system, Journal of Geophysical Research-Atmospheres, Vol. 97, pp. 15787-15801. https://doi.org/10.1029/92JD01517
- Cao, Y., Zheng, F., Xie, Y., and Bi, Y. (2008), Impact of the weighted mean temperature on the estimation of GPS precipitable water vapor, International Conference on Microwave and Millimeter Wave Technology, ICMMT, 21-24 April, Nanjing, China, pp. 799-801.
- Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., and Elgered, G. (1985), Geodesy by radio interferometry - effects of atmospheric modeling errors on estimates of baseline length, Radio Science, Vol. 20, pp. 1593-1607. https://doi.org/10.1029/RS020i006p01593
- Feng, Y., Bai, Z., Fang, P., and Williams, A. (2001), GPS water vapour experimental results from observations of the Australian regional GPS network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress, ISAUST, 25-28 September, Brisbane, Austrailia.
- Jade, S., Vijayan, M.S. M., Gaur, V.K., Prabhu, T.P., and Sahu, S.C. (2005), Estimates of precipitable water vapour from GPS data over the Indian subcontinent, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 67, pp. 623-635. https://doi.org/10.1016/j.jastp.2004.12.010
- Larson, K.M. and Miyazaki, S. (2008), Resolving static offsets from high-rate GPS data: The 2003 Tokachi-oki earthquake, Earth Planets and Space, Vol. 60, pp. 801-808. https://doi.org/10.1186/BF03352831
- Lichten, S.M. and Border, J.S. (1987), Strategies for highprecision global positioning system orbit determination, Journal of Geophysical Research-Solid Earth and Planets, Vol. 92, pp. 12751-12762. https://doi.org/10.1029/JB092iB12p12751
- Liou, Y.A., Teng, Y.T., Van Hove, T., and Liljegren, J.C. (2001), Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, Journal of Applied Meteorology, Vol. 40, pp. 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
- Mendes, V.B., Collins, J.P., and Langley, R.B. (1995), The effect of tropospheric propagation delay errors in airborne GPS precise positioning, 8th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION, 12-15 September, Palm Springs, C.A., pp. 1681-1689.
- Nordman, M., Eresmaa, R., Boehm, J., Poutanen, M., Koivula, H., and Jarvinen, H. (2009), Effect of troposphere slant delays on regional double difference GPS, Earth Planets and Space, Vol. 61, pp. 845-852. https://doi.org/10.1186/BF03353195
- Raju, C.S., Saha, K., Thampi, B.V., and Parameswaran, K. (2007), Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements, Annales Geophysicae, Vol. 25, pp. 1935-1948. https://doi.org/10.5194/angeo-25-1935-2007
- Ross, R.J. and Rosenfeld, S. (1997), Estimating mean weighted temperature of the atmosphere for global positioning system applications, Journal of Geophysical Research-Atmospheres, Vol. 102, pp. 21719-21730. https://doi.org/10.1029/97JD01808
- Saastamoinen, J. (1972), Atmospheric correction for troposphere and stratosphere in radio ranging satellites, In: Henriksen, S. W., Mancini, A., and Chovitz, B. H. (eds.), The Use of Artificial Satellites for Geodesy, American Geophysical Union, Washington, D. C., pp. 485p.
- Schueler, T., Posfay, A., Hein, G. W., and Biberger, R. (2001), A global analysis of the mean atmospheric temperature for GPS water vapor estimation, 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION, 11-14 September, Salt Lake City, Utah, pp. 2746-2489.
- Solbrig, P. (2000), Untersuchungen uber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Ph.D. dissertation, University FAF Munich, Germany.
- Song, D.S. and Grejner-Brzezinska, D.A. (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth Planets Space, Vol. 61, No. 10, pp. 1117-1125. https://doi.org/10.1186/BF03352964
- Song, D.S. and Yun, H.S. (2008), Crustal strain pattern analysis of Korean peninsula using repeated GPS measurements, KSCE Journal of Civil Engineering, Vol. 12, No. 4, pp. 267-273. https://doi.org/10.1007/s12205-008-0267-x
- Song, D.S., Yun, H.S., and Lee, D.H. (2008), Verification of accuracy of precipitable water vapour from GPS during typhoon rusa, Survey Review, Vol. 40, pp. 19-28. https://doi.org/10.1179/003962608X253448
- Wang, J.H., Zhang, L.Y., and Dai, A.G. (2005), Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, Journal of Geophysical Research-Atmospheres, Vol. 110, pp. D21101-D21117. https://doi.org/10.1029/2005JD006215