References
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Ansari, R., Gholami, R. and Sahmani, S. (2013), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83(10), 1439-1449. https://doi.org/10.1007/s00419-013-0756-3
- Arbind, A. and Reddy, J.N. (2013), "Nonlinear analysis of functionally graded microstructure-dependent beams", Compos. Struct., 98, 272-281. https://doi.org/10.1016/j.compstruct.2012.10.003
- Asghari, M., Kahrobaiyan, M. and Ahmadian, M. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
- Chong, A. and Lam, D.C. (1999), "Strain gradient plasticity effect in indentation hardness of polymers", J. Mater. Res., 14(10), 4103-4110. https://doi.org/10.1557/JMR.1999.0554
- Darabi, M., Darvizeh, M. and Darvizeh, A. (2008), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-211. https://doi.org/10.1016/j.compstruct.2007.04.014
- Ebrahimi, F. and Daman, M. (2016), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupled Syst. Mech., Int. J., 5(3), 255-267. https://doi.org/10.12989/csm.2016.5.3.255
- Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., Int. J., 5(1), 35-47. https://doi.org/10.12989/anr.2017.5.1.035
- Fereidoon, A., Andalib, M. and Hemmatian, H. (2015), "Bending Analysis of Curved Sandwich Beams with Functionally Graded Core", Mech. Adv. Mater. Struct., 22(7), 564-577. https://doi.org/10.1080/15376494.2013.828815
- Hajianmaleki, M. and Qatu, M.S. (2012), "Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions", Compos. Part B: Eng., 43(4), 1767-1775. https://doi.org/10.1016/j.compositesb.2012.01.019
- Hosseini, S. and Rahmani, O. (2016a), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11.
- Hosseini, S. and Rahmani, O. (2016b), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stabil. Dyn., 16(10),1550077. https://doi.org/10.1142/S0219455415500777
- Hosseini, S.A.H. and Rahmani, O. (2016c), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Therm. Stress., 1-16.
- Jandaghian, A.A. and Rahmani, O. (2015), "On the buckling behavior of piezoelectric nanobeams: An exact solution", J. Mech. Sci. Technol., 29(8), 3175-3182. https://doi.org/10.1007/s12206-015-0716-7
- Jandaghian, A.A. and Rahmani, O. (2016), "An Analytical Solution for Free Vibration of Piezoelectric Nanobeams Based on a Nonlocal Elasticity Theory", J. Mech., 32(2), 143-151. https://doi.org/10.1017/jmech.2015.53
- Jomehzadeh, E., Noori, H. and Saidi, A. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005
- Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lanhe, W., Hongjun, W. and Daobin, W. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011
- Liu, Y. and Reddy, J. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dyn., 11(3), 495-512. https://doi.org/10.1142/S0219455411004233
- Ma, H., Gao, X.-L. and Reddy, J. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Ma, H., Gao, X.-L. and Reddy, J. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mechanica, 220(1-4), 217-235. https://doi.org/10.1007/s00707-011-0480-4
- McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
- Mohammad-Abadi, M. and Daneshmehr, A. (2014), "Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions", Int. J. Eng. Sci., 74, 1-14. https://doi.org/10.1016/j.ijengsci.2013.08.010
- Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035
- Nie, G. and Zhong, Z. (2012), "Exact Solutions for Elastoplastic Stress Distribution in Functionally Graded Curved Beams Subjected to Pure Bending", Mech. Adv. Mater. Struct., 19(6), 474-484. https://doi.org/10.1080/15376494.2011.556835
- Park, S. and Gao, X. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
- Park, S.K. and Gao, X.L. (2008a), "Micromechanical Modeling of Honeycomb Structures Based on a Modified Couple Stress Theory", Mech. Adv. Mater. Struct., 15(8), 574-593. https://doi.org/10.1080/15376490802470499
- Park, S. and Gao, X.-L. (2008b), "Variational formulation of a modified couple stress theory and its application to a simple shear problem", Zeitschrift fur angewandte Mathematik und Physik, 59(5), 904-917. https://doi.org/10.1007/s00033-006-6073-8
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier.
- Rahmani, O., Hosseini, S.A.H. and Hayati, H. (2016), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Phys. Lett. B, 30(10), 1650136.
- Roque, C., Ferreira, A. and Jorge, R. (2007), "A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory", J. Sound Vib., 300(3), 1048-1070. https://doi.org/10.1016/j.jsv.2006.08.037
- Salamat-talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
- Shafiei, N., Kazemi, M. and Fatahi, L. (2015), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252.
- Shariat, B.S. and Eslami, M. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Simsek, M. and Reddy, J. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Thai, H.-T. and Choi, D.-H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
- Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solids Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration", Int. J. Eng. Sci., 48(12), 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zand, M.M. (2012), "The dynamic pull-in instability and snapthrough behavior of initially curved microbeams", Mech. Adv. Mater. Struct., 19(6), 485-491. https://doi.org/10.1080/15376494.2011.556836
Cited by
- Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2018, https://doi.org/10.12989/scs.2018.29.4.483
- Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect vol.34, pp.5, 2020, https://doi.org/10.12989/scs.2020.34.5.657
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2018, https://doi.org/10.12989/scs.2020.36.3.293
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2018, https://doi.org/10.12989/sem.2021.77.2.217
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.281
- Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001