Acknowledgement
Supported by : China Communications Construction Company Ltd.
References
- Alagusundaramoorthy, P., Harik, I.E. and Choo, C.C. (2006), "Structural behavior of FRP composite bridge deck panels", J. Bridge Eng., 11(4), 384-393. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(384)
- Aref, A.J., Chiewanichakorn, M., Chen, S.S. and Ahn, I.S. (2007), "Effective slab width definition for negative moment regions of composite bridges", J. Bridge Eng., 12(3), 339-349. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(339)
- Berg, A.C., Bank, L.C., Oliva, M.G. and Russell, J.S. (2006), "Construction and cost analysis of an FRP reinforced concrete bridge deck", Constr. Build. Mater., 20(8), 515-526. https://doi.org/10.1016/j.conbuildmat.2005.02.007
- Cheng, L. (2011), "Flexural fatigue analysis of a CFRP form reinforced concrete bridge deck", Compos. Struct., 93(11), 2895-2902. https://doi.org/10.1016/j.compstruct.2011.05.014
- Cho, K., Park, S.Y., Kim, S.T., Cho, J.R. and Kim, B.S. (2013), "Behavioral characteristics of precast FRP-concrete composite deck subjected to combined axial and flexural loads", Compos. B, 44(1), 679-685. https://doi.org/10.1016/j.compositesb.2012.01.079
- Dieter, D.A., Dietsche, J.S., Bank, L.C., Oliva, M. and Russell, J. (2002), "Concrete bridge decks constructed with fiberreinforced polymer stay-in-place forms and grid reinforcing", Transp. Res. Rec.: J. Transp. Res. Board, 1814, 219-226. https://doi.org/10.3141/1814-26
- Gao, D. (2017), "Experimental research on GFRP-concrete-steel composite bridge decks and shear connections", Master Dissertation; Southeast University, Nanjing, China.
- Goncalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., Int. J., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223
- Hanswille, G., Porsch, M. and Ustundag, C. (2007a), "Resistance of headed studs subjected to fatigue loading: Part I: Experimental study", J. Constr. Steel Res., 63(4), 475-484. https://doi.org/10.1016/j.jcsr.2006.06.035
- Hanswille, G., Porsch, M. and Ustundag, C. (2007b), "Resistance of headed studs subjected to fatigue loading Part II: Analytical study", J. Constr. Steel Res., 63(4), 485-493. https://doi.org/10.1016/j.jcsr.2006.06.036
- He, J., Liu, Y.Q., Chen, A.R. and Dai, L. (2012), "Experimental investigation of movable hybrid GFRP and concrete bridge deck", Constr. Build. Mater., 26(1), 49-64. https://doi.org/10.1016/j.conbuildmat.2011.05.002
- Honickman, H., Nelson, M. and Fam, A. (2009), "Investigation into the bond of glass fiber-reinforced polymer stay-in-place structural forms to concrete for decking applications", Transp. Res. Rec.: J. Transp. Res. Board, 2131, 134-144. https://doi.org/10.3141/2131-13
- Huang, Y., Huang, D., Yang, Y., Yi, W.J. and Zhu, Z.G. (2016), "Element-based effective width for deflection calculation of steel-concrete composite beams", J. Constr. Steel Res., 121, 163-172. https://doi.org/10.1016/j.jcsr.2016.02.010
- JTGT D64-01-2015 (2015), Specifications for design and construction of highway steel-concrete composite bridge, MOT; Beijing, China.
- Khorramian, K., Maleki, S., Shariati, M., Jalali, A., and Tahir, M. M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
- Moses, J.P., Harries, K.A., Earls, C.J. and Yulismana, W. (2006), "Evaluation of effective width and distribution factors for GFRP bridge decks supported on steel girders", J. Bridge Eng., 11(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(401)
- Nelson, M. and Fam, A. (2012), "Structural GFRP permanent forms with T-shape ribs for bridge decks supported by precast concrete girders", J. Bridge Eng., 18(9), 813-826. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000418
- Nelson, M. and Fam, A. (2014), "Modeling of flexural behavior and punching shear of concrete bridge decks with FRP stay-inplace forms using the theory of plates", J. Eng. Mech., 140(12), 04014095. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000813
- Nie, J.G. and Cai, C.S. (2003), "Steel-concrete composite beams considering shear slip effects", J. Struct. Eng., 129(4), 495-506. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495)
- Nie, J., Cai, C.S. and Wang, T. (2005), "Stiffness and capacity of steel-concrete composite beams with profiled sheeting", Eng. Struct., 27(7), 1074-1085. https://doi.org/10.1016/j.engstruct.2005.02.016
- Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
- Samaaneh, M.A., Sharif, A.M., Baluch, M.H. and Azad, A.K. (2016), "Numerical investigation of continuous composite girders strengthened with CFRP", Steel Compos. Struct., Int. J., 21(6), 1307-1325. https://doi.org/10.12989/scs.2016.21.6.1307
- Tenchev, R.T. (1996), "Shear lag in orthotropic beam flanges and plates with stiffeners", Int. J. Solids Struct., 33(9), 1317-1334. https://doi.org/10.1016/0020-7683(95)00093-3
- Wang, Y.C. (1998), "Deflection of steel-concrete composite beams with partial shear interaction", J. Struct. Eng., 124(10), 1159-1165. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1159)
- Wang, W.W., Dai, J.G. and Harries, K.A. (2013), "Intermediate crack-induced debonding in RC beams externally strengthened with prestressed FRP laminates", J. Reinf. Plast. Comp., 32(23), 1842-1857. https://doi.org/10.1177/0731684413492574
- Zheng, Y.Z., Wang, W.W. and Brigham, J.C. (2016), "Flexural behavior of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC", Constr. Build. Mater., 115, 424-437. https://doi.org/10.1016/j.conbuildmat.2016.04.038
- Zhou, W.B., Li, S.J., Jiang, L.Z. and Qin, S.Q. (2015), "Vibration analysis of steel-concrete composite box beams considering shear lag and slip", Math. Probl. Eng., 2015(1), 1-8.
- Zou, B., Chen, A., Davalos, J.F. and Salim, H.A. (2011), "Evaluation of effective flange width by shear lag model for orthotropic FRP bridge decks", Compos. Struct., 93(2), 474-482. https://doi.org/10.1016/j.compstruct.2010.08.033
Cited by
- Experimental and analytical study on continuous GFRP-concrete decks with steel bars vol.76, pp.6, 2018, https://doi.org/10.12989/sem.2020.76.6.737
- Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches vol.40, pp.2, 2018, https://doi.org/10.12989/scs.2021.40.2.267