Acknowledgement
Supported by : National Science Foundation
References
- Arshian, A.H. and Morgenthal, G. (2017), "Three-dimensional progressive collapse analysis of reinforced concrete frame structures subjected to sequential column removal", Eng. Struct., 132, 87-97. https://doi.org/10.1016/j.engstruct.2016.11.018
- Cassianola, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., Int. J., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., Int. J., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Dusenberry, D.O. and Hamburger, R.O. (2006), "Practical means for energy-based analyses of disproportionate collapse potential", J. Perform. Construct. Facil., 20(4), 336-348. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)
- Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D., Lew, H. and Carino, N. (2007), "Best practices for reducing the potential for progressive collapse in buildings", US Department of Commerce, National Institute of Standards and Technology.
- Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D., Lew, H.S. and Carino, N.J. (2007), "Best practices for reducing the potential for progressive collapse in buildings", Gaithersburg: National Institute of Standards and Technology.
- Fu, F. (2010), "3-d nonlinear dynamic progressive collapse analysis of multistorey steel composite frame buildings-parametric study", Eng. Struct., 32(12), 3974-3980. https://doi.org/10.1016/j.engstruct.2010.09.008
- Fu, F. (2012), "Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios", J. Constr. Steel Res., 70, 115-126. https://doi.org/10.1016/j.jcsr.2011.10.012
- GSA (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects; The U.S. General Services Administration;
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., Int. J., 17(3), 215-236. https://doi.org/10.12989/scs.2014.17.3.215
- Izzuddin, B., Vlassis, A., Elghazouli, A. and Nethercot, D. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - part i: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
- Kim, J. and Kim, T. (2009), "Assessment of progressive collapseresisting capacity of steel moment frames", Journal of Constructional Steel Research, 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020
- Kim, J. and Park, J. (2008), "Design of steel moment frames considering progressive collapse", Steel Compos. Struct., Int. J., 8(1), 85-98. https://doi.org/10.12989/scs.2008.8.1.085
- Kim, J.K., Lee, S.J. and Choi, H.H. (2010), "Progressive collapse resisting capacity of moment frames with viscous dampers", J. Computat. Struct. Eng. Inst. Korea, 23(5), 517-524.
- Kordbagh, B. and Mohammadi, M. (2017), "Influence of seismicity level and height of the building on progressive collapse resistance of steel frames", Struct. Des. Tall Special Build., 26(2).
- Liu, R., Davison, B. and Tyas, A. (2005), "A study of progressive collapse in multi-storey steel frames", Proceedings of Structures Congress 2005: Metropolis and Beyond, New York, NY, April, pp. 1-9.
- Nezamisavojbolaghi, K., Hosseini, M. and Shafiei, A. (2017), "Numerical Modeling of Infills in Asymmetric Steel Moment Frames for Their Dynamic Analysis with Progressive Collapse Approach", Proceedings of the 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes Island, Greece, June, pp. 1403-1418.
- Rezvani, F.H. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames", Steel Compos. Struct., Int. J., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135
- Seethalakshmi, M.S., Prakash, M., Satyanarayanan, K.S. and Thamilarasu, V. (2016), "Effect of Masonry Infill Structure with Openings during Progressive Collapse by Removing a Middle Column", Ind. J. Sci. Technol., 9(23).
- Tavakoli, H.R. and Kiakojouri, F. (2013), "Influence of sudden column loss on dynamic response of steel moment frames under blast loading", Int. J. Eng. Transact. B: Appl., 26(2), 197-206.
- Tavakoli, H.R. and Kiakojouri, F. (2013), "Numerical study of progressive collapse in framed structures: A new approach for dynamic column removal", Int. J. Eng., Transact. A: Basics, 26(7), 685-692.
- Tsai, M.H. (2017), "An Approximate Analytical Formulation for the Rise-Time Effect on Dynamic Structural Response Under Column Loss", Int. J. Struct. Stabil. Dyn, 1850038.
- Usmani, A.S., Chung, Y.C. and Torero, J.L. (2003), "How did the WTC towers collapse: a new theory", Fire Safe. J., 38(6), 501-533. https://doi.org/10.1016/S0379-7112(03)00069-9
- Unified Facilities Criteria (UFC)-DoD. (2005), Design of Buildings to Resist Progressive Collapse; Department of Defense.
- Wang, T., Chen, Q., Zhao, H. and Zhang, L. (2016) "Experimental study on progressive collapse performance of frame with specially shaped columns subjected to middle column removal", Shock Vib., 13 p. DOI: 10.1155/2016/7956189
- Wickersheimer, D.J. (1976), "The Vierendeel", J. Soc. Architect. Hist., 35(1), 54-60. https://doi.org/10.2307/988971