DOI QR코드

DOI QR Code

A NEW ALGORITHM FOR SOLVING MIXED EQUILIBRIUM PROBLEM AND FINDING COMMON FIXED POINTS OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS

  • Received : 2018.08.14
  • Accepted : 2018.12.16
  • Published : 2018.12.30

Abstract

In this paper, we study a new iterative method for solving mixed equilibrium problem and a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which also are solutions of a mixed equilibrium problem.

Keywords

References

  1. Y.I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York, (1996) 15-50.
  2. M. Aslam Noor, Generalized mixed quasi-equilibrium problems with trifunction, Appl. Math. Lett. 18 (2005) 695-700. https://doi.org/10.1016/j.aml.2004.04.015
  3. M. Aslam Noor, W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Matematiche (Catania) 49 (1994) 313-331.
  4. E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
  5. H. H. Bauschke, J. M. Borwein, P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001) 615-647. https://doi.org/10.1142/S0219199701000524
  6. J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problem, Springer, NewYork (NY), 2000.
  7. R.E. Bruck, S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977) 459-470.
  8. D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. Art. ID 84919 (2006) 1-39.
  9. D. Butnariu, A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Applied Optimization, 40 Kluwer Academic, Dordrecht 2000.
  10. L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008) 186-201. https://doi.org/10.1016/j.cam.2007.02.022
  11. Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981) 321-353. https://doi.org/10.1007/BF00934676
  12. O. Chadli, N.C. Wong, J.C. Yao, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl. 117 (2003) 245-266. https://doi.org/10.1023/A:1023627606067
  13. O. Chadli, S. Schaible, J.C. Yao, Regularized equilibrium problems with an application to noncoercive hemivariational inequalities, J. Optim. Theory Appl. 121 (2004) 571-596. https://doi.org/10.1023/B:JOTA.0000037604.96151.26
  14. J. B. Hiriart-Urruty, C. Lemarechal, Grundlehren der mathematischen Wissenschaften, in: Convex Analysis and Minimization Algorithms II, 306, Springer-Verlag, (1993).
  15. G. Kassay, S. Reich, S. Sabach, Iterative methods for solving systems of variational inequalities in re exive Banach spaces, SIAM J. Optim. 21 (2011) 1319-1344. https://doi.org/10.1137/110820002
  16. F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005) 505-523.
  17. W. Kumam, U. Witthayaratb, P. Kumam, S. Suantai, K. Wattanawitoon, Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces, Optimization 65 (2016) 265-280.
  18. I.V. Konnov, S. Schaible, J.C. Yao, Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl. 126 (2005) 309-322. https://doi.org/10.1007/s10957-005-4716-0
  19. V. Martin-Marquez, S. Reich, S. Sabach, Iterative methods for approximating fixed points of Bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Ser. S. 6 (2013) 1043-1063.
  20. J. J. Moreau, Sur la fonction polaire dune fonction semi-continue suprieurement [On the polar function of a semi-continuous function superiorly], C. R. Acad. Sci. Paris. 258 (1964) 1128-1130.
  21. J. W. Peng, J. C. Yao, Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Math. Comp. Model. 49 (2009) 1816-1828. https://doi.org/10.1016/j.mcm.2008.11.014
  22. R. P. Phelps, Convex Functions, Monotone Operators, and Differentiability, second ed., in: Lecture Notes in Mathematics, vol. 1364, Springer Verlag, Berlin, 1993.
  23. S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, (1996) 313-318.
  24. S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009) 471-485.
  25. S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algo-rithms for Inverse Problems in Science and Engineering, Optimization and Its Applications, 49 (2011) 301-316.
  26. S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010) 22-44. https://doi.org/10.1080/01630560903499852
  27. R. T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966) 46-63. https://doi.org/10.1090/S0002-9947-1966-0192318-X
  28. S. Suantai, Y. J. Cho, P. Cholamjiak, Halperns iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl. 64 (2012) 489-499. https://doi.org/10.1016/j.camwa.2011.12.026
  29. H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678. https://doi.org/10.1023/A:1023073621589
  30. Y. Yao, M. Aslam Noor, S. Zainab, Y. C. Liou, Mixed equilibrium problems and optimization problems J. Math. Anal. Appl. 354 (2009) 319-329 . https://doi.org/10.1016/j.jmaa.2008.12.055
  31. C. Zalinescu, Convex analysis in general vector spaces, World Scientific, River Edge, (2002).
  32. H. Zegeye, Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Filomat. 7 (2014) 1525-1536.