Acknowledgement
Supported by : National Natural Science Funds Fund of China, Central Universities of China
References
- Abusharar, S.W., Zheng, J.J., Chen, B.G. and Yin, J.H. (2009), "A simplified method for analysis of a piled embankment reinforced with geosynthetics", Geotext. Geomembranes, 27(1), 39-52. https://doi.org/10.1016/j.geotexmem.2008.05.002
- Blanc, M., Rault, G., Thorel, L. and Almeida, M. (2013), "Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network", Geotext. Geomembranes, 36(2), 92-105. https://doi.org/10.1016/j.geotexmem.2012.12.001
- British Standard 8006 (2010), Code of Practice for Strengthened Reinforced Soils and Other Fills, British Standard Institute.
- Chen, R.P., Xu, Z.Z., Chen, Y.M., Ling, D.S. and Zhu, B. (2010), "Field tests on pile-supported embankments over soft ground", J. Geotech. Geoenviron. Eng., 136(6), 777-785. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000295
- Chen, Y.M., Cao, W.P. and Chen, R.P. (2008), "An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments", Geotext. Geomembranes, 26(2), 164-174. https://doi.org/10.1016/j.geotexmem.2007.05.004
- Chevalier, B., Villard, P. and Combe, G. (2011), "Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions", Int. J. Geomech., 11(3), 239-250. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000083
- Cho, Y., Bang, S. and Preber, T. (2002), "Transition of soil friction during suction pile installation", Can. Geotech. J., 39(5), 1118-1125. https://doi.org/10.1139/t02-054
- Comodromos E.M. and Bareka S.V. (2005), "Evaluation of negative skin friction effects in pile foundations using 3D nonlinear analysis", Comput. Geotech., 32(3), 210-221. https://doi.org/10.1016/j.compgeo.2005.01.006
- Eskisar, T., Otani, J. and Hironaka, J. (2012), "Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT", Geotext. Geomembranes, 32(6), 44-54. https://doi.org/10.1016/j.geotexmem.2011.12.002
- Fenton, G. and Griffiths, D. (2002), "Probabilistic foundation settlement on spatially random soil", J. Geotech. Geoenviron. Eng., 128(5), 381-390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381)
- Guo, P.J. and Zhou, S.H. (2013), "Arch in granular materials as a free surface problem", Int. J. Numer. Anal. Meth. Geomech., 37(9), 1048-1065. https://doi.org/10.1002/nag.1137
- Gavin, K.G. and O'Kelly, B.C. (2007), "Effect of friction fatigue on pile capacity in dense sand", J. Geotech. Geoenviron. Eng., 133(1), 63-71. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(63)
- Han, J. and Gabr, M. (2002), "Numerical analysis of geosyntheticreinforced and pile-supported earth platforms over soft soil", J. Geotech. Geoenviron. Eng., 128(1), 44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
- Hossain, M.S. and Randolph, M.F. (2010), "Deep-penetrating spudcan foundations on layered clays: Centrifuge tests", Geotechnique, 60(3), 157-170. https://doi.org/10.1680/geot.8.P.039
- Hudacsek, P., Bransby, M.F. and Hallett, P.D. (2009), "Centrifuge modelling of climatic effects on clay embankments", Proc. ICE Eng. Sustain., 162(2), 91-100.
- Jenck, O., Dias, D. and Kastner, R. (2009), "Three-dimensional numerical modeling of a piled embankment", Int. J. Geomech., 9(3), 102-112. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:3(102)
- Lee, C.J. and Ng, C.W.W. (2004), "Development of downdrag on piles and pile groups in consolidating soil", J. Geotech. Geoenviron. Eng., 130(9), 905-914. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(905)
- LeHello, B. and Villard, P. (2009), "Embankments reinforced by piles and geosynthetics numerical and experimental studies dealing with the transfer of load on the soil embankment", Eng. Geol., 106(12), 78-91. https://doi.org/10.1016/j.enggeo.2009.03.001
- Leung, C.F., Liao, B.K., Chow, Y.K., Shen, R.F. and Kog, Y.C. (2004), "Behavior of pile subject to negative skin friction and axial load", Soil. Found., 44(6), 17-26. https://doi.org/10.3208/sandf.44.6_17
- Marchi, G.F., Schiavo, M., Kempton, G., Naughton, P. and Scotto, M. (2006), "The use of geogrids in the construction of piled embankments on the new lines of the Italian high speed train", Geosyntheics, 9(3), 909-912.
- McCullough, N.J, Dickenson, S.E. and Schlechter, S.M. (2007), "Centrifuge seismic modeling of pile-supported wharves", Geotech. Test. J., 30(5), 349-359.
- Ministry of Railways of People's Republic of China (2014), Code for Design of High Speed Railway, TB10621-2014, China Railway Press, Beijing, China.
- Mutsumi, T., Toshihiro, N., Motohiro, I., Masaki, N. and Akira, A. (2011), "Prediction of settlement in natural deposited clay ground with risk of large residual settlement due to embankment loading", Soil. Found., 51(1), 133-149. https://doi.org/10.3208/sandf.51.133
- Ng, W.W., Poulos, G., Chan, S.H., Lam, S.Y. and Chan, C.Y. (2008), "Effects of tip location and shielding on piles in consolidating ground", J. Geotech. Geoenviron. Eng., 134(9), 1245-1260. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1245)
- Nordic Geotechnical Society (2004), Nordic Handbook, Reinforced Soils and Fills, Nordic Geotechnical Society, Stockholm, Sweden.
- Peiris, L.M.N., Madabhushi, S.P.G. and Schofield, A.N. (2008), "Centrifuge modeling of rock-fill embankments on deep loose saturated sand deposits subjected to earthquakes", J. Geotech. Geoenviron. Eng., 134(9), 1364-1374. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1364)
- Railway Technology Research Institute (2001), The Design and Construction Handbook of Mixing Piled Foundation (Machine Mixing), Railway Technology Research Institute, Tokyo, Japan.
- Samui, P. (2008), "Prediction of friction capacity of driven piles in clay using the support vector machine", Can. Geotech. J., 45(2), 288-295. https://doi.org/10.1139/T07-072
- Shideh, D., Jonathan, D.B., Juan, M.P., Michael, R. and Dan, W. (2010), "Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil", J. Geotech. Geoenviron. Eng., 136(1), 151-164. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179
- Toshihiro, N., Akira, A., Masaki, N., Eiji, Y. and Mutsumi, T. (2005), "Progressive consolidation settlement of naturally deposited clayey soil under embankment loading", Soil. Found., 45(5), 39-51.
- Wang, C.D., Wang, B.L., Guo, P.J. and Zhou, S.H. (2015), "Experimental analysis on settlement controlling of geogridreinforced pile-raft-supported embankments in high-speed railway", Acta Geotechnica, 9(6), 20-31.
- Wang, C.D., Zhou, S.H., Wang, B.L. and Guo, P.J. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., 11(6), 847-865. https://doi.org/10.12989/gae.2016.11.6.847
- Wang, C.D., Zhou, S.H., Guo, P.J. and Wang, B.L. (2014), "Experimental analysis on settlement controlling of geogridreinforced pile-supported embankments", Int. J. Pavement Eng., 15(9), 867-878. https://doi.org/10.1080/10298436.2014.943130
- White, D.J. and Bolton, M.D. (2004), "Displacement and strain paths during plane-stain model pile installation in sand", Geotechnique, 54(6), 375-397. https://doi.org/10.1680/geot.2004.54.6.375
- Yapage, N.N.S, Liyanapathirana, D.S., Leo, C.J., Poulos, H.G. and Kelly, R.B. (2012), An Investigation of Arching Mechanism of Geosynthetic Reinforced Column Supported Embankments, in Materials to Structures: Advancement through Innovation, CRC Press, Boca Raton, Florida, U.S.A.
- Zheng, G., Jiang, Y., Han, J. and Liu, Y.F. (2011), "Performance of cement-fly ash-gravel pile-supported high-speed railway embankments over soft marine clay", Mar. Georesour. Geotechnol., 29(2), 145-161. https://doi.org/10.1080/1064119X.2010.532700
Cited by
- CFG Pile Composite Foundation: Its Engineering Applications and Research Advances vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/5343472
- Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles vol.24, pp.4, 2021, https://doi.org/10.12989/gae.2021.24.4.389
- Dynamic response of CFG and cement-soil pile composite foundation in the operation stage vol.26, pp.4, 2018, https://doi.org/10.12989/gae.2021.26.4.385