DOI QR코드

DOI QR Code

Salmonella Enteritidis와 Salmonella Gallinarum의 세균막 스트레스를 인식하는 spy-gfp 오페론 융합

The spy-gfp Operon Fusion in Salmonella Enteritidis and Salmonella Gallinarum Senses the Envelope Stress

  • 강보경 (조선대학교 치과대학 구강미생물학 교실) ;
  • 방일수 (조선대학교 치과대학 구강미생물학 교실)
  • Kang, Bo Gyeong (Dept. of Microbiology and Immunology, Chosun University School of Dentistry) ;
  • Bang, Iel Soo (Dept. of Microbiology and Immunology, Chosun University School of Dentistry)
  • 투고 : 2018.12.15
  • 심사 : 2018.12.25
  • 발행 : 2018.12.31

초록

낙농업 및 유가공 제품의 생산과 유통에서 살모넬라 감염에 의한 살모넬라증의 발생은 빈번하며, 이 세균의 항미생물 제제에 대한 내성 증가 현상 또한 지속되고 있어 새로운 항미생물 제제의 수요는 감소하지 않는다. 세균막의 훼손은 세균 생존을 쉽게 위협할 수 있기 때문에 개발되는 항미생물 제제들은 주로 세균의 막을 표적으로 삼지만, 개발되는 제제들이 실제로 세균막의 훼손을 초래하는지 구별하는 것은 많은 노력과 비용을 수반한다. 본 연구에서는 E. coli 세포막 스트레스에 의해 발현이 유도되고, 세균막 외부공간에서만 위치하며, 그 구조상 많은 단백질의 구조 안정화에 기여할 것으로 예상되는 chaperone 단백질 Spy(spheroplast protein Y)의 유전자에 상응하는 살모넬라 spy 유전자에 gfp(green fluorescence protein) 오페론 융합체를 제조하여, 이 융합체가 Salmonella enterica의 두 혈청형 Enteritidis와 Gallinarum의 세포막 스트레스를 인지하여 GFP 발현량이 크게 증가하는 것을 확인하였다. 또한 세균막 스트레스 신호를 특이적으로 인지하는 이인자 신호전달 체계(two component signal transduction system)인 Bae와 Cpx들이 두 살모넬라 혈청형의 spy 유전자 전사 유도에 필수적임을 확인하였다. 따라서 본 연구에서 사용한 spy-gfp 오페론 융합체는 S. Enteritidis와 S. Gallinarum의 세포막 훼손을 특이적이고 신속하게 인식하는 biosensor로서 활용될 수 있을 것으로 판단된다.

Emergence of drug resistant strains of Salmonella enterica threatens milk processing and related dairy industries, thereby increasing the need for development of new anti-bacterials. Developments of antibacterial drugs are largely aimed to target the bacterial envelope, but screening their efficacy on bacterial envelope is laborious. This study presents a potential biosensor for envelope-specific stress in which a gfp reporter gene fused to spy gene encoding a periplasmic chaperone protein Spy (spheroplast protein y) that can sense envelope stress signals transduced by two major two-component signal transduction systems BaeSR and CpxAR in Salmonella enterica serovars Enteritidis and S. Gallinarum. Using spy-gfp operon fusions in S. Enterititis and S. Gallinarum, we found that spy transcription in both serovars was greatly induced when Salmonella cells were forming the spheroplast and were treated with ethanol or a membrane-disrupting antibiotic polymyxin B. These envelope stress-specific inductions of spy transcription were abrogated in mutant Salmonella lacking either BaeR or CpxR. Results illustrate that induction of Spy expression can be efficiently triggered by two-component signal transduction systems sensing envelope stress conditions, and thereby suggest that monitoring the spy transcription by spy-gfp operon fusions would be helpful to determine if developing antimicrobials can damage envelopes of S. Enteritidis and S. Gallinarum.

키워드

참고문헌

  1. Birdsell, D. C. and Cota-Robles, E. H. 1967. Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J. Bacteriol. 93:427-437.
  2. Burkinshaw, B. J. and Strynadka, N. C. 2014. Assembly and structure of the T3SS. Biochim. Biophys. Acta. 1843:1649-1463. https://doi.org/10.1016/j.bbamcr.2014.01.035
  3. Bury-Mone, S., Nomane, Y., Reymond, N., Barbet, R., Jacquet, E., Imbeaud, S., Jacq, A. and Bouloc, P. 2009. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS. Genet. 5:e1000651. https://doi.org/10.1371/journal.pgen.1000651
  4. Chmielewski, R. A. N. and Frank, J. F. 2003. Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety 2:22-32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x
  5. Cho, Y., Park, Y. M., Barate, A. K., Park, S. Y., Park, H. J., Lee, M. R., Truong, Q. L., Yoon, J. W., Bang, I. S. and Hahn, T. W. 2015. The role of rpoS, hmp, and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. J. Vet. Sci. 16:187-194. https://doi.org/10.4142/jvs.2015.16.2.187
  6. Goemans, C., Denoncin, K. and Collet, J. F. 2014. Folding mechanisms of periplasmic proteins. Biochim. Biophys. Acta. 1843:1517-1528. https://doi.org/10.1016/j.bbamcr.2013.10.014
  7. Grassl, G. A. and Finlay, B. B. 2008. Pathogenesis of enteric Salmonella infections. Curr. Opin. Gastroenterol. 24:22-26. https://doi.org/10.1097/MOG.0b013e3282f21388
  8. Hagenmaier, S., Stierhof, Y. D. and Henning, U. 1997. A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J. Bacteriol. 179:2073-2076. https://doi.org/10.1128/jb.179.6.2073-2076.1997
  9. Henderson, B., Allan, E. and Coates, A. R. 2006. Stress wars: The direct role of host and bacterial molecular chaperones in bacterial infection. Infect. Immun. 74:3693-3706. https://doi.org/10.1128/IAI.01882-05
  10. Hur, J., Jawale, C. and Lee, J. H. 2012. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International 45:819-830. https://doi.org/10.1016/j.foodres.2011.05.014
  11. Jeong, S. M., Lee, H. J., Park, Y. M., Kim, J. S., Lee, S. D. and Bang, I. S. 2017. Inducible spy transcription acts as a sensor for envelope stress of Salmonella typhimurium. Korean J. Food Sci. Anim. Resour. 37:134-138. https://doi.org/10.5851/kosfa.2017.37.1.134
  12. Kousta, M., Mataragas, M., Skandamis, P. and Drosinos, E. H. 2010. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 21:805-815. https://doi.org/10.1016/j.foodcont.2009.11.015
  13. Oliver, S. P., Jayarao, B. M. and Almeida, R. A. 2005. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease 2:115-129. https://doi.org/10.1089/fpd.2005.2.115
  14. Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., Hofmann, S., Foit, L., Ren, G., Jakob, U., Xu, Z., Cygler, M. and Bardwell, J. C. 2011. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat. Struct. Mol. Biol. 18:262-269. https://doi.org/10.1038/nsmb.2016
  15. Rowley, G., Spector, M., Kormanec, J. and Roberts, M. 2006. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 4:383-394. https://doi.org/10.1038/nrmicro1394
  16. Ryan, C. A., Nickels, M. K., Hargrett-Bean, N. T., Potter, M. E., Endo, T., Mayer, L., Langkop, C. W., Gibson, C., McDonald, R. C., Kenney, R. T., Puhr, N. D., McDonnell, P. J., Martin, R. J., Cohen, M. L. and Blake, P. A. 1987. Massive outbreak of antimicrobial-resistant salmonellosis traced to pasteurized milk. JAMA. 258:3269-3274. https://doi.org/10.1001/jama.1987.03400220069039
  17. Srivastava, S. K., Lambadi, P. R., Ghosh, T., Pathania, R. and Navani, N. K. 2014. Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol. Gene 548:142-148. https://doi.org/10.1016/j.gene.2014.07.003
  18. International Commission on Microbiological Specificifications for Foods Staff. 2002. Salmonella in dried milk. Microbiological Testing in Food Safety Management. Boston, MA: Springer US, pp. 273-284.
  19. Sun, J. S. and Hahn, T. W. 2012. Comparative proteomic analysis of Salmonella enterica serovars Enteritidis, Typhimurium and Gallinarum. J. Vet. Med. Sci. 74:285-291. https://doi.org/10.1292/jvms.11-0366
  20. Valdivia, R. H. and Falkow, S. 1996. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22:367-378. https://doi.org/10.1046/j.1365-2958.1996.00120.x
  21. Wales, A. D., Allen, V. M. and Davies, R. H. 2010. Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog. Dis. 7:3-15. https://doi.org/10.1089/fpd.2009.0373
  22. Wolf, D. and Mascher, T. 2016. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: Expression systems and whole-cell biosensors. Appl. Microbiol. Biotechnol. 100:4817-4829. https://doi.org/10.1007/s00253-016-7519-3