DOI QR코드

DOI QR Code

Production and biological applications for marine proteins and peptides- An overview

해양생물로부터 기능성 펩티드의 생산 및 응용

  • Kim, Se-Kwon (College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Byun, Hee-Guk (Department of Marine Biotechnology, Gangneung-Wonju National University)
  • 김세권 (한국해양대학교 해양과학기술대학) ;
  • 변희국 (강릉원주대학교 해양생물공학과)
  • Received : 2018.11.26
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.

최근 들어 먹거리와 건강에 대한 사람들의 관심이 점점 높아지면서 이에 관한 정보 또한 중요시 되고 있다. 우리나라 전체 사회가 고령화 사회로 접어들면서 환경의 악화로부터 오는 질병과 생활 습관병의 증가를 자기 자신의 문제로 받아들이는 사람들이 늘고 있기 때문이다. 의료 분야는 치료 중심에서 예방 의학으로 관심이 높아지고 있지만 예방약이라고 할 수 있는 약품은 매우 적다. 암, 동맥경화, 당뇨병 같은 성인병을 예방하려면 약에 의한 예방이 아닌 먹거리에 의한 예방을 적극적으로 도입시킬 필요가 있다. 해양은 육상과는 다른 특이한 생태계를 이루는 환경 때문에 적자생존의 경쟁 속에서 살아남기 위하여 특히 물리적 방어 능력이 부족한 해양생물의 2차 대사산물은 육상생물의 그것과는 상이한 화학적 특성을 가진다. 이러한 다양한 2차 대사산물은 화학적 방어 수단의 일환으로 생성되는 것으로 알려져 있는데 이들 물질이 인체나 다른 포유동물에 투여되면 강력한 생리활성을 발현하는 경우가 많다. 이러한 이유들 때문에 해양생물로부터 새로운 생리활성 선도물질을 개발하여 인류의 건강 보전에 이용하고자 하는 연구가 최근 각광받고 있다. 해조류, 어패류 및 수산가공부산물(폐기물)에서 기능성을 나타내는 단백질 가수분해물 및 펩티드의 제조 방법 및 항균, 항산화, 심장보호(항고혈압, 항동맥경화 및 항응고), 면역조절, 항당뇨, 식욕억제 및 신경보호 활성과 같은 여러가지 생리 기능성에 대하여 살펴보았다. 무엇보다도 해양단백질 가수분해물 및 펩티드가 다양한 생리활성을 갖고 있어 건강식품 및 식의약 산업에서 응용이 가능하고 원료인 해조류 및 수산가공부산물이 대부분 미이용자원이므로 관련기업에서의 상품화 개발이 이루어질 것으로 기대된다. 최근에 소비자나 환자들도 의약품에 대한 바람직하지 않은 부작용을 의식하고 있고 화학적으로 합성된 의약품을 기피하는 경향이 있고 자연식품이나 천연 생리기능성 물질에 대한 욕구로 자가치료에 대한 사고방식이 높아지고 있어 의약품 보다는 효능이 다소 낮을지라도 어떤 질병의 예방이나 치료를 위해 특수한 생리기능성 물질의 섭취는 더욱 더 인기를 끌게 될 것으로 기대된다. 그러나 단백질 가수분해물이나 펩티드가 신체에서 나타내는 상태와 생리기능성 효과 사이에 상호관계를 충분히 밝혀져야 하며 이들을 이용한 제품의 보다 확실한 생리기능성의 작용 메커니즘과 임상에서의 효능의 확인이 이루어져야 하며 마켓팅을 위해서는 무엇보다도 공인기관인 식약처 또는 FDA에 인증을 받아야 할 것이다.

Keywords

References

  1. Achour A, Lachgar A, Astgen A, Chams V, Bizzini B, Tapiero H, Zagury D. Potentialization of IL-2 effects on immune cells by oyster extract (JCOE) in normal and HIV-infected individuals. Biomed. pharmacother. 51: 427-429 (1997). https://doi.org/10.1016/S0753-3322(97)82320-7
  2. Aleman A, Perez-Santin E, Bordenave-Juchereau S, Arnaudin I, Gomez-Guillen MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res. Int. 44: 1044-1051 (2011) https://doi.org/10.1016/j.foodres.2011.03.010
  3. Anderson WG, Ali MF, Einarsdottir IE, Schaffer L, Hazon N, Conlon JM. Purification, characterization, and biological activity of insulins from the spotted dogfish, Scyliorhinus canicula, and the hammerhead shark, Sphyrna lewini. Gen. Comp. Endocr. 126: 113-122 (2002) https://doi.org/10.1006/gcen.2002.7787
  4. Arihara K, Ohata M. Functional peptide. pp. 60-71. In: Functional Amino Acid & Functional peptides. CMC Press, Tokyo, Japan (2012)
  5. Athukorala Y, Lee KW, Kim SK, Jeon YJ. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol. 98: 1711-1716 (2007) https://doi.org/10.1016/j.biortech.2006.07.034
  6. Augier H, Santimone M. Contribution a l'etude de la composition en azote total, en proteines et en acides amines proteiniques des differentes parties du thalle de Laminaria digitata (Huds) Lamour. dans le cadre de son exploitation agricole. B. Soc. Bot. Fr. 23: 19-28 (1978)
  7. Bartlett TC, Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS, Warr GW. Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar. Biotechnol. 4: 278-293 (2002) https://doi.org/10.1007/s10126-002-0020-2
  8. Battison AL, Summerfield R, Patrzykat A. Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish Shellfish Immun. 25: 181-187 (2008) https://doi.org/10.1016/j.fsi.2008.04.005
  9. Bauchart C, Chambon C, Mirand PP, Savary-Auzeloux I, Remond D, Morzel M. Peptides in rainbow trout (Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chem. 100: 1566-1572 (2007) https://doi.org/10.1016/j.foodchem.2005.12.023
  10. Bernet F, Montel V, Noel B, Dupouy JP. Diazepam-like effects of a fish protein hydrolysate (Gabolysat PC60) on stress responsiveness of the rat pituitary-adrenal system and sympathoadrenal activity. Psychopharmacology 149: 34-40 (2000) https://doi.org/10.1007/s002139900338
  11. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 118: 559-565 (2010) https://doi.org/10.1016/j.foodchem.2009.05.021
  12. Byun HG, Lee JK, Park HG, Jeon JK, Kim SK. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochem. 44: 842-846 (2009) https://doi.org/10.1016/j.procbio.2009.04.003
  13. Chang CI, Zhang YA, Zou J, Nie P, Secombes CJ. Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and atlantic salmon (Salmo salar). Antimicrob. Agents Ch. 50: 185-195 (2006) https://doi.org/10.1128/AAC.50.1.185-195.2006
  14. Cheryan M, Mehaia MA. Membrane bioreactors: Enzyme process. pp. 671-990, In: Biotechnology and Food Process Engineering. Schwartiberg H, Rao MA (eds.) Marcel Dekker, New York, USA. (1990)
  15. Cornish ML, Garbary DJ. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25: 155-171 (2010) https://doi.org/10.4490/algae.2010.25.4.155
  16. Cudennec B, Ravallec-Ple R, Courois E, Fouchereau-Peron M. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chem. 111: 970-975 (2008) https://doi.org/10.1016/j.foodchem.2008.05.016
  17. Davalos A, Miguel M, Bartolome B, Lopez-Fandino R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67: 1939-1944 (2004) https://doi.org/10.4315/0362-028X-67.9.1939
  18. Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 103: 891-899 (2007) https://doi.org/10.1016/j.foodchem.2006.09.041
  19. Douglas SE, Gallant JW, Liebscher RS, Dacanay A, Tsoi SCM. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev. Comp. Immunol. 27: 589-601 (2003) https://doi.org/10.1016/S0145-305X(03)00036-3
  20. Fahmi A, Morimura S, Guo HC, Shigematsu T, Kida K, Uemura Y. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem. 39: 1195-1200 (2004) https://doi.org/10.1016/S0032-9592(03)00223-1
  21. Falco A, Chico V, Marroqui L, Perez L, Coll JM, Estepa A. Expression and antiviral activity of a ${\beta}$-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol. immunol. 45: 757-765 (2008) https://doi.org/10.1016/j.molimm.2007.06.358
  22. Fitzgerald AJ, Rai PS, Marchbank T, Taylor GW, Ghosh S, Ritz BW, Playford RJ. Reparative properties of a commercial fish protein hydrolysate preparation. Gut 54: 775-781 (2005) https://doi.org/10.1136/gut.2004.060608
  23. Fleurence J. Seaweed proteins. pp. 197-213. In: Proteins in Food Processing. Yada RY (ed). Wood Head Publishing, Cambridge, UK (2004)
  24. Fujita H, Yoshikawa M. LKPNM: A prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44: 123-127 (1999) https://doi.org/10.1016/S0162-3109(99)00118-6
  25. Galland-Irmouli AV, Fleurence J, Lamghari R, Lucon M, Rouxel C, Barbaroux, O, ..., Gueant JL. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutr. Biochem. 10: 353-359 (1999) https://doi.org/10.1016/S0955-2863(99)00014-5
  26. Hai-Lun HE, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z, Bai-Cheng Z. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis. J. Pept. Sci. 12: 726-733 (2006) https://doi.org/10.1002/psc.789
  27. Harnedy PA, FitzGerald RJ. Bioactive proteins peptides and amino acids from macroalgae. J. Phycol. 47: 218-232 (2011) https://doi.org/10.1111/j.1529-8817.2011.00969.x
  28. Hirono I, Hwang JY, Ono Y, Kurobe T, Ohira T, Nozaki R, Aoki T. Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus. FEBS J. 272: 5257-5264 (2005) https://doi.org/10.1111/j.1742-4658.2005.04922.x
  29. Hsu KC, Li-Chan ECY, Jao CL. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line. Food Chem. 126: 617-622 (2011) https://doi.org/10.1016/j.foodchem.2010.11.066
  30. Hsu KC, Lu GH, Jao CL. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Res. Int. 42: 647-652 (2009) https://doi.org/10.1016/j.foodres.2009.02.014
  31. Ichimura T, Hu J, Aita DQ, Maruyama S. Angiotensin I-converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. J. Biosci. Bioeng. 96: 496-499 (2003) https://doi.org/10.1016/S1389-1723(03)70138-8
  32. Iijima N, Tanimoto N, Emoto Y, Morita Y, Uematsu K, Murakami T, Nakai T. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J. Biochem. 270: 675-686 (2003) https://doi.org/10.1046/j.1432-1033.2003.03419.x
  33. Jayasankar V, Subramoniam T. Antibacterial activity of seminal plasma of the mud crab Scylla serrata (Forskal). J. Exp. Mar. Biol. Ecol. 236: 253-259 (1999) https://doi.org/10.1016/S0022-0981(98)00203-2
  34. Je JY, Park PJ, Byun HG, Jung WK, Kim SK. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresource Technol. 96: 1624-1629 (2005) https://doi.org/10.1016/j.biortech.2005.01.001
  35. Je JY, Park PJ, Kim SK. Antioxidant activity of a peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38: 45-50 (2005) https://doi.org/10.1016/j.foodres.2004.07.005
  36. Je JY, Qian ZJ, Byun HG, Kim SK. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42: 840-846 (2007) https://doi.org/10.1016/j.procbio.2007.02.006
  37. Jeon YJ, Byun HG, Kim SK. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 35: 471-478 (1999) https://doi.org/10.1016/S0032-9592(99)00098-9
  38. Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyd. Polym. 41: 133-141 (2000) https://doi.org/10.1016/S0144-8617(99)00084-3
  39. Jo HY, Jung WK, Kim SK. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus. Process Biochem. 43: 179-184 (2008) https://doi.org/10.1016/j.procbio.2007.11.011
  40. Jun SY, Park PJ, Jung WK, Kim SK. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20-26 (2004) https://doi.org/10.1007/s00217-004-0882-9
  41. Jung WK, Heo SJ, Kim SK, Jeon YJ. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem. 41: 2097-2100 (2006) https://doi.org/10.1016/j.procbio.2006.05.008
  42. Jung WK, Je JY, Kim HJ, Kim SK. A novel anticoagulant protein from Scapharca broughtonii. BMB Rep. 35: 199-205 (2002) https://doi.org/10.5483/BMBRep.2002.35.2.199
  43. Jung WK, Kim SK. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. Eur. Food Res. Technol. 224: 763-767 (2007) https://doi.org/10.1007/s00217-006-0371-4
  44. Jung WK, Kim SK. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem. 117: 687-692 (2009) https://doi.org/10.1016/j.foodchem.2009.04.077
  45. Jung WK, Lee BJ and Kim SK. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Brit. J. Nutr. 95: 124-128 (2006) https://doi.org/10.1079/BJN20051615
  46. Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, ..., Kim SK. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94: 26-32 (2006) https://doi.org/10.1016/j.foodchem.2004.09.048
  47. Kajimoto O, Nakano T, Kato T, Takahashi T. Hypotensive effects of jelly containing Wakame peptides on mild hypertensive subjects. J. of Nutritional Food. 5: 67-81 (2002)
  48. Kajimoto O, Nakano T, Kato T, Takahashi T. Hypotensive effects of jelly containing Wakame peptides on mild hypertensive subjects. J. of Nutritional Food. 5: 67-81 (2002)
  49. Kajimoto O. Hypotensive effect and safety of the granular foods containing oligo peptides derived from nori (Porphya yezoensis) in subjects with high-normal blood pressure. J. Nutr. Food, 7: 43-58 (2004)
  50. Kanis JA, Oden A, Johnell O, Caulin F, Bone H, Alexandre JM, Lekkerkerker F. Uncertain future of trials in osteoporosis. Osteoporos. Int. 13: 443-449 (2002) https://doi.org/10.1007/s001980200052
  51. Katano S, Oki T, Matsuo Y, Yoshihira K, Nara Y, Miki T, ..., Matsumoto K. Antihypertensive effect of alkaline protease hydrolysate of the pearl oyster Pinctada fucata martensii & separation and identification of angiotensin-I converting enzyme inhibitory peptides. Nippon Suisan Gakkaishi (Japanese Edition). 69: 975-980. (2003) https://doi.org/10.2331/suisan.69.975
  52. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 365: 217-223 (2005) https://doi.org/10.1016/S0140-6736(05)17741-1
  53. Kim GH, Jeon YJ, Byun HG, Lee YS, Lee EH, Kim SK. Effect of calcium compounds from oyster shell bouid fish skin gelatin peptide in calcium deficient rats. J. Korean Fish. Soc. 31: 149-159 (1998)
  54. Kim SK, Byun HG, Ahn CB, Cho DJ, Lee EH. Functional properties of produced fish skin gelatin hydrolysate in a recycle three step membrane enzyme reactor. J. of Korean Ind. & Eng. Chem. 6: 984-996 (1995)
  55. Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food. Chem. 49: 1984-1989 (2001) https://doi.org/10.1021/jf000494j
  56. Kim SK, Mendis E, Shahidi F. Marine fisheries by-products as potential nutraceuticals: an overview. pp. 1-22. In: Marine Nutraceuticals and Fuanctional Foods. Barrow C, Shahidi F (eds.) CRC Press Inc., Boca Raton, FL, USA (2008)
  57. Kim SK, Mendis E. Bioactive compounds from marine processing byproducts-a review. Food Res. Int. 39: 383-393 (2006) https://doi.org/10.1016/j.foodres.2005.10.010
  58. Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct. Foods. 2: 1-9 (2010) https://doi.org/10.1016/j.jff.2010.01.003
  59. Kim SK. Anti-aging. pp. 28-33. In : Healthcare Using Marine Organisms. Kim SK (ed). CRC Press Inc., Boca Raton, FL, USA (2018)
  60. Kim SY, Je JY, Kim SK. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31-38 (2007) https://doi.org/10.1016/j.jnutbio.2006.02.006
  61. Kohama Y, Matsumoto S, Oka H, Teramoto T, Okabe M, Mimura T. Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem. Biophys. Res. Commun. 155: 332-337 (1988) https://doi.org/10.1016/S0006-291X(88)81089-1
  62. Koiso H. Use of antibiotic peptides as Food additives. Bioindustry. 32: 11-19 (2015)
  63. Koyama T, Noguchi K, Aniya Y, Sakanashi M. Analysis for sites of anticoagulant action of plancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in the blood coagulation cascade. General Pharmacology: The Vascular System. 31: 277-282 (1998) https://doi.org/10.1016/S0306-3623(97)00443-6
  64. Kumar NS, Nazeer RA, Jaiganesh R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides. 32: 1496-1501 (2011) https://doi.org/10.1016/j.peptides.2011.05.020
  65. Lee JM, You SG, Kim SM. Functional activities of low molecular weight peptides purified from enzymatic hydrolysates of seaweeds. J. Korean Soc. Food. Sci. Nutr. 34: 1124-1129 (2005) https://doi.org/10.3746/jkfn.2005.34.8.1124
  66. Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 118: 96-102 (2010) https://doi.org/10.1016/j.foodchem.2009.04.086
  67. Lee TG, Maruyama S. Isolation of HIV-1 protease-inhibiting peptides from thermolysin hydrolysate of oyster proteins. Biochem. Biophys. Res. Commun. 253: 604-608. (1998) https://doi.org/10.1006/bbrc.1998.9824
  68. Li C, Haug T, Styrvold OB, Jorgensen TO, Stensvag K. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol. 32: 1430-1440 (2008) https://doi.org/10.1016/j.dci.2008.06.013
  69. Liang Y, Guan R, Huang W, Xu T. Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla japonica. Protein J. 30: 413-421 (2011) https://doi.org/10.1007/s10930-011-9346-9
  70. Liu F, Li JL, Yue GH, Fu JJ, Zhou ZF. Molecular cloning and expression analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in grass carp. Vet. Immunol. Immunopathol. 133: 133-143 (2010) https://doi.org/10.1016/j.vetimm.2009.07.014
  71. Liu X, Wang J, Zhang W, Du J, Du Y. Analysis of inosine monophosphate in six fish musculatures. J. Mar. Sci. 2: 005 (2008)
  72. Liu Z, Dong S, Xu J, Zeng M, Song H, Zhao Y. Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19: 231-235 (2008) https://doi.org/10.1016/j.foodcont.2007.03.004
  73. Madden T, Tran HT, Beck D, Huie R, Newman RA, Pusztai L, ..., Abbruzzese JL. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 6: 1293-1301 (2000)
  74. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 97: 2402-2406 (2006) https://doi.org/10.1016/j.biortech.2005.10.014
  75. Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci. Biotechnol. Biochem. 58: 2244-2245 (1994) https://doi.org/10.1271/bbb.58.2244
  76. Meisel H, Walsh DJ, Murray BA, FitzGerald RJ. ACE Inhibitory Peptides. pp. 269-315 In: Neutraceutical Proteins and Peptides in Health and Disease. Mine Y, Shahidi F (eds.). CRC Press Inc., Boca Raton, FL, USA. 2006.
  77. Mendis E, Rajapakse N, Byun HG, Kim SK. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77: 2166-2178 (2005) https://doi.org/10.1016/j.lfs.2005.03.016
  78. Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. of Agric. Food Chem. 53: 581-587 (2005) https://doi.org/10.1021/jf048877v
  79. Morgan KC, Wright JLC, Simpson FJ. Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ. Bot. 34: 27-50 (1980) https://doi.org/10.1007/BF02859553
  80. Murray BA, FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 13: 773-791 (2007) https://doi.org/10.2174/138161207780363068
  81. Murray J, Burt JR. The Composition of Fish. Ministry of Technology, Torry Research Station (No. 38). Torry advisory note. Retrieved from www.fao.org (2001)
  82. Nagaoka S. Cholesterol-lowering proteins and peptides. pp. 53-79. In: Nutraceutical proteins and peptides in health and disease. Mine Y, Shahidi F(eds). CRC Press Inc., Boca Raton, FL, USA (2005)
  83. Ono S, Hosokawa M, Miyashita K, Takahashi K. Inhibition properties of dipeptides from salmon muscle hydrolysate on angiotensin Iconverting enzyme. Int. J. food sci. tech. 41: 383-386 (2006) https://doi.org/10.1111/j.1365-2621.2005.01080.x
  84. Pan X, Zhao YQ, Hu FY, Chi CF, Wang B. Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa Cells. Mar. Drugs 14: 152-161 (2016) https://doi.org/10.3390/md14080152
  85. Pangestuti R, Ryu BM, Himaya SWA, Kim SK. Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus. Amino Acids 45: 369-381 (2013) https://doi.org/10.1007/s00726-013-1510-4
  86. Park PJ, Kim EK, Lee SJ, Park SY, Kang DS, Jung BM, ..., Ahn CB. Protective effects against $H_2O_2$-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica). J. Med. Food 12: 159-166 (2009) https://doi.org/10.1089/jmf.2007.0675
  87. Poncin LM, Lamproglou I. Experimental study: Stress and memory. Eur. Neuropsychopharmacol. 6: 110 (1996)
  88. Poncin LM. Nutrient presentation of cognitive and memory performances. Eur. Neuropsychopharmacol. 6: 187 (1996)
  89. Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. J. Agri. Food Chem. 55: 8398-8403 (2007) https://doi.org/10.1021/jf0710635
  90. Qian ZJ, Jung WK, Byun HG, Kim SK. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour. Technol. 99: 3365-3371 (2008) https://doi.org/10.1016/j.biortech.2007.08.018
  91. Qian ZJ, Jung WK, Kim SK. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 99: 1690-1698 (2008) https://doi.org/10.1016/j.biortech.2007.04.005
  92. Quilang J, Wang S, Shi Y, Wallace R, Guo X, Liu Z. Generation and analysis of ESTs from the eastern oyster, Crassostrea virginica Gmelin and identification of microsatellite and SNP markers. BMC Genomics 8: 157 (2007) https://doi.org/10.1186/1471-2164-8-157
  93. Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci. 76: 2607-2619. (2005) https://doi.org/10.1016/j.lfs.2004.12.010
  94. Rajapakse N, Mendis E, Byun HG, Kim SK. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radicalmediated oxidative systems. J. Nutr. Biochem. 16: 562-569 (2005) https://doi.org/10.1016/j.jnutbio.2005.02.005
  95. Rajapakse N, mendis E, Jung WK, Je JY, Kim SK. Purification of radical scavenging peptide from fermented mussel sauce and its antioxidant properties, Food Res. Int. 38: 175-182 (2005) https://doi.org/10.1016/j.foodres.2004.10.002
  96. Ranathunga S, Rajapakse N, Kim SK. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Euro. Food Res. Technol. 222: 310-315 (2006) https://doi.org/10.1007/s00217-005-0079-x
  97. Ren J, Zhao M, Shi J, Wang J, Jiang Y, Cui C, Xue SJ. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108: 727-736 (2008)
  98. Ryu BM, Kang KH, Ngo DH, Qian ZJ, Kim SK. Statistical optimization of microalgae Pavlova lutheri cultivation conditions and its fermentation conditions by yeast, Candida rugopelliculosa. Bioresour. Technol. 107: 307-313 (2012) https://doi.org/10.1016/j.biortech.2011.12.014
  99. Ryu BM, Kim MJ, Himaya SWA, Kang KH, Kim SK. Statistical optimization of high temperature/pressure and ultra-wave assisted lysis of Urechis unicinctus for the isolation of active peptide which enhance the erectile function in vitro. Process Biochem. 49: 148-153 (2014) https://doi.org/10.1016/j.procbio.2013.09.019
  100. Ryu BM, Kim SK. Potential beneficial effects of marine peptide on human neuron health. Curr. Protein Pept. Sci. 14: 173-176 (2013) https://doi.org/10.2174/13892037113149990043
  101. Saito M, Hagino H. Antihypertensive effect of oligopeptides derived from nori (Porphyra yezoensis) and Ala-Lys-Tyr-Ser-Tyr in rats. J. Jpn. Soc. Food Sci. Technol. 58: 177-184 (2005)
  102. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 31: 1949-1956 (2010) https://doi.org/10.1016/j.peptides.2010.06.020
  103. Schaffer LW, Davidson JT, Vlasuk GP, Siegl PKS. Antithrombotic efficacy of recombinant tick anticoagulant peptide. A potent inhibitor of coagulation factor Xa in a primate model of arterial thrombosis. Circulation 84: 1741-1748 (1991) https://doi.org/10.1161/01.CIR.84.4.1741
  104. Schurink M, van Berkel WJ, Wichers HJ, Boeriu CG. Novel peptides with tyrosinase inhibitory activity. Peptides 28: 485-495 (2007) https://doi.org/10.1016/j.peptides.2006.11.023
  105. Shahidi F, Zhong Y. Antioxidants: Regulatory Status. pp. 491-521. In: Bailey's Industrial Oil and Fat Products. Shahidi F (ed). John Wiley & Sons, Inc. (2005)
  106. Sheih IC, Wu TK, Fang TJ. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol. 100: 3419-3425 (2009) https://doi.org/10.1016/j.biortech.2009.02.014
  107. SM Kim. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci. Biotechnol. 20: 1075-1085 (2011) https://doi.org/10.1007/s10068-011-0146-y
  108. Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, Styrvold OB. Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev. Comp. Immunol. 32: 275-285 (2008) https://doi.org/10.1016/j.dci.2007.06.002
  109. Su Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 158: 149-154 (2011) https://doi.org/10.1016/j.cbpb.2010.11.002
  110. Suetsuna K, Maekawa K, Chen JR. Antihypertensive effects of Undaria pinnatifida (Wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15: 267-272 (2004) https://doi.org/10.1016/j.jnutbio.2003.11.004
  111. Suetsuna K, Nakano T. Identification of an antihypertensive peptide from peptic digest of Wakame (Undaria pinnatifida). J. Nutr. Biochem. 11: 450-454 (2000) https://doi.org/10.1016/S0955-2863(00)00110-8
  112. Suetsuna K, Saito M. Enzyme-decomposed materials of laver and uses thereof. U.S. Patent No. 6,217,879. Washington, DC: U.S. Patent and Trademark Office. (2001)
  113. T Saito. Antihypertensive peptides. Functional Amino acid & Functional Peptides. pp. 73-77. CMC Publishing Co. Tokyo. Japan (2012)
  114. Porkelsson G, Kristinsson HG. Bioactive peptides from marine sources. State of art. Report to the NORA fund. 14-19. (2009)
  115. Tierney MS, Croft AK, Hayes M. A review of antihypertensive and antioxidant activities in macroalgae. Bot. Mar.53: 387-408 (2010).
  116. Tsai JS, Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria). Process Biochemistry. 43: 743-747 (2008) https://doi.org/10.1016/j.procbio.2008.02.019
  117. Ullal AJ, Litaker RW, Noga EJ. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Developmental & Comparative Immunology. 32: 1301-1312 (2008) https://doi.org/10.1016/j.dci.2008.04.005
  118. Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 111: 302-308 (2008) https://doi.org/10.1016/j.foodchem.2008.03.059
  119. Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL, Zhang YZ. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs. 8: 255-268 (2010) https://doi.org/10.3390/md8020255
  120. Wesson KJ, Hamann MT. Keenamide A, A bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod. 59: 629-631 (1996) https://doi.org/10.1021/np960153t
  121. Wijesinghe W, Jeon YJ. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohyd. Polym. 88: 13-20 (2012) https://doi.org/10.1016/j.carbpol.2011.12.029
  122. Wu H, He HL, Chen XL, Sun CY, Zhang YZ, Zhou BC. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochem. 43: 457-461 (2008) https://doi.org/10.1016/j.procbio.2008.01.018
  123. Wu Z, Chen H, Wang W, Jia B, Yang T, Zhao Z, ..., Xiao X. Differentiation of dried sea cucumber products from different geographical areas by surface desorption atmospheric pressure chemical ionization mass spectrometry. J. Agric. Food Chem. 57: 9356-9364 (2009) https://doi.org/10.1021/jf9018504
  124. Zeng M, Cui W, Zhao Y, Liu Z, Dong S, Guo Y. Antiviral active peptide from oyster. Chin. J. Oceanol. Limn. 26: 307-312 (2008) https://doi.org/10.1007/s00343-008-0307-x
  125. Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, ...., Ruan R. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl. Energ. 98: 433-440 (2012) https://doi.org/10.1016/j.apenergy.2012.04.005
  126. Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y, Li Y. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl. Physiol. Nutr. Me. 35: 797-804 (2010) https://doi.org/10.1139/H10-075
  127. Zhu CF, Peng HB, Liu GQ, Zhang F, Li Y. Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition 26: 1014-1020 (2010) https://doi.org/10.1016/j.nut.2010.01.011
  128. 김세권, 이현철, 변희국, 전유진. 가자미피 젤라틴 가수분해물로부터 항산화 펩티드의 분리.정제 및 특성. 한국수산학회지, 29: 246-255 (1996).
  129. 김세권. 생선껍질 콜라겐의 고도 활용 기술. pp. 266-282. In: 바다를 알면 미래가 보인다. 김세권(ed.) 월드사이언스 (2018)
  130. 김세권. 수산물과 고혈압. pp. 237-247. In: 해양생물을 이용한 헬스케어. 김세권(ed.). 자유아카데미 (2015).
  131. 김세권. 어류의 육종과 생명공학기술. In: 해양생명공학. pp.81-109. 김세권(ed.) 월드사이언스 (2013)
  132. 김세권. 해양생물로부터 기능성 화장품 소재 개발. pp.329-330. In: 해양생물을 이용한 헬스케어. 김세권(ed.). 자유아카데미 (2015).
  133. 山口勝己. 魚介類の組織と構成成分. pp. 1-6. In: 水産生物化学. 山口勝己(ed.). 東京大学出版会. Tokyo, Japan (1990)
  134. 天野秀臣. 海藻の生化学とバイオテクノロジ. pp. 177-178. In: 水産生物化学. 山口勝己(ed.). 東京大学出版会. Tokyo, Japan (1990)