DOI QR코드

DOI QR Code

Comparison of Biological Activities of Korean Halophytes

  • Lee, Jeong Min (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Yim, Mi-Jin (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Lee, Dae-Sung (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Lee, Myeong Seok (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Park, Yun Gyeong (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Jeon, Jae Hyuk (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Choi, Grace (Department of Applied Research, National Marine Biodiversity Institute of Korea)
  • Received : 2018.04.30
  • Accepted : 2018.07.10
  • Published : 2018.12.31

Abstract

Halophytes are expected to possess abundant secondary metabolites and various biological activities because of habitat in extreme environments. In this study, we collected 14 halophytes (Asparagus oligoclonos, Calystegia soldanella, Carex pumila, Chenopodium glaucum, Elymus mollis, Glehnia littoralis, Limonium tetragonum, Messerschmidia sibirica, Rosa rugosa, Salsola komarovii, Spergularia marina, Suaeda glauca, Suaeda maritima, and Vitex rotundifolia) native to Korea and compared their total polyphenol contents, antioxidant and anti-inflammatory activities. The total polyphenol contents of R. rugosa (27.28%) and L. tetragonum (13.17%) were significantly higher than those of the other 12 halophytes and L. tetragonum, R. rugosa, and M. sibirica showed significantly greater antioxidant activities than the other 11 halophytes, as determined by DPPH (2,2-diphenyl-1-picrylhydrazyl). A. oligoclonos, E. mollis, and C. pumila showed significantly greater anti-inflammatory activities than the other 11, as determined by NO (Nitric oxide) and $PGE_2$ (Prostaglandin $E_2$) levels. In contrast, these three extracts had normal and low total polyphenol contents among the 14 halophytes. Consequently, the total polyphenol content in the 14 studied halophytes appeared to be related to antioxidant, but not anti-inflammatory activity levels.

Keywords

References

  1. Liebezeit, G.; Kunnemann, T. D.; Gad, G. J. Biotech. 1999, 70, 77-84. https://doi.org/10.1016/S0168-1656(99)00061-9
  2. Abdelly, C.; Barhoumi, Z.; Ghnaya, T.; Debez, A.; Ben Hamed, K.; Ksouri, R.; Talbi, O.; Zribi, F.; Ouerghi, Z.; Smaoui, A.; Huchzernmeyer, B.; Grignon, C. Potential utilization of halophytes for the rehabilitation and valorization of salt-affected areas in Tunisia: Biosaline Agriculture and Salinity Tolerance in Plants; Ozturk, M.; Waisel, Y.; Khan, M. A.; Gork, G. Springer; New York, 2006, pp 161-170.
  3. Ksouri, R.; Ksouri, W. M.; Jallali, I.; Debez, A.; Magne, C.; Hiroko, I.; Abdelly, C. Crit. Rev. Biotech. 2012, 32, 289-326. https://doi.org/10.3109/07388551.2011.630647
  4. Virag, L.; Szabo, E.; Gergely, P.; Szabo, C. Toxicol. Lett. 2003, 140-141, 113-124. https://doi.org/10.1016/S0378-4274(02)00508-8
  5. Wang, B.; Luttge, U.; Ratajczak, R. J. Plant Physiol. 2004, 161, 285-293. https://doi.org/10.1078/0176-1617-01123
  6. Drel, V. R.; Pacher, P.; Vareniuk, I.; Pavlov, I.; Ilnytska, O.; Lyzogubov, V. V.; Tibrewala, J.; Groves, J. T.; Obrosova, I. G. Eur. J. Pharmacol. 2007, 569, 48-58. https://doi.org/10.1016/j.ejphar.2007.05.055
  7. Korda, M.; Kubant, R.; Patton, S.; Malinski, T. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1514-H1521. https://doi.org/10.1152/ajpheart.00479.2008
  8. Jaleel, C. A.; Gopi, R.; Manivannan, P.; Panneerselvam, R. Turk. J. Bot. 2007, 31, 245-251.
  9. Manikandan, T.; Neelakandan, T.; Usha Rani, G. J. Phytol. 2009, 1, 441-443.
  10. Falleh, H.; Ksouri, R.; Medini, F.; Guyot, S.; Abdelly, C.; Magne, C. Ind. Crops Prod. 2011, 34, 1066-1071. https://doi.org/10.1016/j.indcrop.2011.03.018
  11. Gnanadesigan, M.; Ravikumar, S.; Inbaneson, S. J. Asian Pac. J. Trop. Med. 2011, 4, 462-465. https://doi.org/10.1016/S1995-7645(11)60126-0
  12. Oueslati, S.; Ksouri, R.; Falleh, H.; Pichette, A.; Abdelly, C.; Legault, J. Food Chem. 2012, 132, 943-947. https://doi.org/10.1016/j.foodchem.2011.11.072
  13. Kim, M. S.; Seo, J. Y.; Oh, J.; Jang, Y. K.; Lee, C. H. Kim, J. S. J. Med. Food 2017, 20, 140-151. https://doi.org/10.1089/jmf.2016.3829
  14. Kojima, T.; Akiyama, H.; Sasai, M.; Taniuchi, S.; Goda, Y.; Toyoda, M.; Kobayashi, Y. Allergol. Int. 2000, 49, 69-73. https://doi.org/10.1046/j.1440-1592.2000.00161.x
  15. An, B. J.; Kwak, J. H.; Park, J. M.; Lee, J. Y.; Park, T. S.; Lee, J. T.; Son, J. H.; Jo, C.; Byun, M. W. Dermatol. Surg. 2005, 31, 848-854.
  16. dos Santos, M. D.; Almeida, M. C.; Lopes, N. P.; de Souza, G. E. Biol. Pharm. Bull. 2006, 29, 2236-2240. https://doi.org/10.1248/bpb.29.2236
  17. Moreno, S.; Scheyer, T.; Romano, C. S.; Vojnov, A. A. Free Radic. Res. 2006, 40, 223-231. https://doi.org/10.1080/10715760500473834
  18. Mohan, K. V.; Gunasekaran, P.; Varalakshmi, E.; Hara, Y.; Nagini, S. Cell Biol. Int. 2007, 31, 599-608. https://doi.org/10.1016/j.cellbi.2006.11.034
  19. Mokni, M.; Limam, F.; Elkahoui, S.; Amri, M.; Aouani, E. Arch. Biochem. Biophys. 2007, 457, 1-6. https://doi.org/10.1016/j.abb.2006.10.015
  20. Yamabe, N.; Kang, K.S.; Matsuo, Y.; Tanaka, T.; Yokozawa, T. Biol. Pharm. Bull. 2007, 30, 1289-1296. https://doi.org/10.1248/bpb.30.1289
  21. Cienfuegos-Jovellanos, E.; Quinones Mdel, M.; Muguerza, B.; Moulay, L.; Miguel, M.; Aleixandre, A. J. Agric. Food Chem. 2009, 57, 6156-6162. https://doi.org/10.1021/jf804045b
  22. Perron, N. R.; Brumaghim, J. L. Cell Biochem. Biophys. 2009, 53, 75-100. https://doi.org/10.1007/s12013-009-9043-x
  23. Lee, J. M.; Yim. M. J.; Choi, G.; Lee, M. S.; Park, Y. G.; Lee, D. S. Nat. Prod. Sci. 2018, 24, 40-46. https://doi.org/10.20307/nps.2018.24.1.40
  24. Cho, M. S.; Park, W. S.; Jung, W. K.; Qian, Z. J.; Lee, D. S.; Choi, J. S.; Lee, D. Y.; Park, S. G.; Seo, S. K.; Kim, H. J.; Won, J. Y.; Yu, B. C.; Choi, I. W. Pharm. Biol. 2014, 52, 926-932. https://doi.org/10.3109/13880209.2013.865243
  25. Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magne, C.; Abdelly, C. Food Chem. Toxicol. 2009, 47, 2083-2091. https://doi.org/10.1016/j.fct.2009.05.040
  26. Lee, J. I.; Kong, C. S.; Jung, M. E.; Hong, J. W.; Lim, S. Y.; Seo, Y. Biotechnol. Bioprocess Eng. 2011a, 16, 992-999. https://doi.org/10.1007/s12257-011-0213-5
  27. Lee, J. I.; Kong, C. S.; Jung, M. E.; Hong, J. W.; Noh, I.; Seo, Y. Ocean and Polar Res. 2011b, 33, 185-191. https://doi.org/10.4217/OPR.2011.33.2.185
  28. Youwei, Z.; Yonghong, P. N. Z. J. Crop Hortic. Sci. 2007, 35, 397-401. https://doi.org/10.1080/01140670709510207
  29. Ng, T. B.; He, J. S.; Niu, S. M.; Zhao, L.; Pi, Z. F.; Shao, W.; Liu, F. J. Pharm. Pharmacol. 2004, 56, 537-545. https://doi.org/10.1211/0022357022944
  30. Kim, G. S.; Kim, H. T.; Seong, J. D.; Oh, S. R.; Bang, J. K.; Seong, N. S.; Song, K. S. J. Nat. Prod. 2005, 68, 766-768. https://doi.org/10.1021/np040128k
  31. Adao, C. R.; de Silva, B. P.; Parente, J. P. Fitoterapia 2011, 82, 1175-1180. https://doi.org/10.1016/j.fitote.2011.08.003
  32. Balica, G.; Vostinaru, O.; Tamas, M.; Crisan, G.; Mogosan, C. J. Food Agric. Environ. 2013, 11, 106-108.
  33. Kurihara, H.; Kawabata, J.; Ichikawa, S.; Mizutani, J. Agric. Biol. Chem. 1990, 54, 1097-1099.
  34. Kawabata, J.; Mishima, M.; Kurihara, H.; Mizutani, J. Phytochemistry 1991, 30, 645-647. https://doi.org/10.1016/0031-9422(91)83744-6
  35. Kawabata, J.; Mishima, M.; Kurihara, H.; Mizutani, J. Phytochemistry 1995, 40, 1507-1510. https://doi.org/10.1016/0031-9422(95)00501-W
  36. Chung, E. Y.; Kim, B. H.; Lee, M. K.; Yun, Y. P.; Lee, S. H.; Min, K. R.; Kim, Y. Planta Med. 2003, 69, 710-714. https://doi.org/10.1055/s-2003-42787

Cited by

  1. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals vol.23, pp.3, 2018, https://doi.org/10.1186/s41240-020-00149-8
  2. Calystegia soldanella Extract Exerts Anti-Oxidative and Anti-Inflammatory Effects via the Regulation of the NF-κB/Nrf-2 Pathways in Mouse Macrophages vol.10, pp.10, 2018, https://doi.org/10.3390/antiox10101639