DOI QR코드

DOI QR Code

Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

  • Lee, Dong Gu (Department of Integrative Plant Science, Chung-Ang University) ;
  • Quilantang, Norman G. (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Ju Sung (Department of Integrative Plant Science, Chung-Ang University) ;
  • Geraldino, Paul John L. (Department of Biology, University of San Carlos) ;
  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2018.04.30
  • Accepted : 2018.05.22
  • Published : 2018.12.31

Abstract

Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1 - 4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1 - 4 were highest in ginseng obtained from Geumsan ($185{\mu}g/g$), white-6 yr ginseng ($150{\mu}g/g$), and P. quinquefolius ($186{\mu}g/g$). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.

Keywords

References

  1. Li, T.S.C. Hort. Technol. 1995, 5, 27-34.
  2. Coon, J.T.; Ernst, E. Drug Safety 2002, 25, 323-344. https://doi.org/10.2165/00002018-200225050-00003
  3. Attele, A.; Zhou, P.; Xie, J.T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.; Polonsky, K.; Yuan, C.S. Diabetes 2002, 51, 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  4. Shibata, S. J. Korean Med. Sci. 2001, 16, S28-37. https://doi.org/10.3346/jkms.2001.16.S.S28
  5. Siddiqi, M.H.; Siddiqi, M.Z.; Ahn, S.; Kang, S.; Kim, Y.J.; Sathishkumar, N.; Yang, D.U.; Yang, D.C. J. Ginseng Res. 2013, 37, 261-268. https://doi.org/10.5142/jgr.2013.37.261
  6. Kitts, D.D.; Wijewickreme, A.N.; Hu, C. Mol. Cell Biochem. 2000, 203, 1-10. https://doi.org/10.1023/A:1007078414639
  7. Karu, N.; Reifen, R.; Kerem, Z. J. Agric. Food Chem. 2007, 55, 2824-2828. https://doi.org/10.1021/jf0628025
  8. Yue, P.Y.K.; Mak, N.K.; Cheng, Y.K.; Leung, K.W.; Ng, T.B.; Fan, D.T.P.; Yeung, H.W.; Wong, R.N.S. Chin. Med. 2007, 2, 1-21. https://doi.org/10.1186/1749-8546-2-1
  9. Jang, H.E.; Jung, H.J.; Mok, H.J. Appl. Biol. Chem. 2017, 60, 321-326.
  10. Proctor, J.T.; Bailey, W. Hort. Rev. 1987, 9, 187-236.
  11. Baeg, I.H.; So, S.H. J. Ginseng Res. 2013, 37, 1-7. https://doi.org/10.5142/jgr.2013.37.1
  12. Wang, W.; Zhao, Y.; Rayburn, E.; Hill, D.; Wang, H.; Zhang, R. Cancer Chemother. Pharmacol. 2007, 59, 589-601. https://doi.org/10.1007/s00280-006-0300-z
  13. Wang, J.; Li, S.; Fan, Y.; Chen, Y.; Liu, D.; Cheng, H.; Gao, X.; Zhou, Y. J. Ethnopharmacol. 2010, 130, 421-423. https://doi.org/10.1016/j.jep.2010.05.027
  14. Matsunaga, H.; Mitsuo, K.; Yamamoto, H.; Fujito, H.; Mori, M.; Takata, K. Chem. Pharm. Bull. 1990, 38, 3480-3482. https://doi.org/10.1248/cpb.38.3480
  15. Joo, K.M.; Park, C.H.; Jeong, H.J.; Lee, S.J.; Chang, I.S. J. Chromatography B 2008, 865, 159-166. https://doi.org/10.1016/j.jchromb.2008.02.012
  16. Christensen, L. Adv. Food. Nutr. Res. 2008, 55, 1-99.
  17. Lee, D.G.; Lee, A.H.; Kim, K.T.; Cho, E.J.; Lee, S. Chem Pharm Bull 2015, 63, 927-934. https://doi.org/10.1248/cpb.c15-00302
  18. Lee, C.R.; Whang, W.K.; Shin, C.G.; Lee, H.S.; Han, S.T.; Im, B.O.; Ko, S.K. Kor. J. Food Sci. Technol. 2004, 36, 847-850.
  19. Lee, S.A.; Liuting, H.K.; Im, B.O.; Cho, S.H.; Whang, W.K.; Ko, S.K. Kor. J. Pharmacogn. 2010, 41, 319-322.
  20. Ahn, S.I.; Kim, S.K.; Yang, B.W.; Lee, E.S.; Kang, C.S.; Hahm, Y.T. Kor. J. Hort. Sci. Tech. 2016, 34, 790-798.
  21. Dong, H.D.; Cho, C.W.; Kim, Y.C.; Kim, E.Y.; Rhee, Y.K.; Rho, J.H.; Choi, S.H. J. Ginseng Res. 2012, 36, 314-321. https://doi.org/10.5142/jgr.2012.36.3.314
  22. Lim, C.Y.; Moon, J.M.; Kim, B.Y.; Lim, S.H.; Lee, G.S.; Yu, H.S.; Cho, S.I. J. Ginseng Res. 2015, 39, 38-45. https://doi.org/10.1016/j.jgr.2014.07.004
  23. Cui, J.F. Eur. J. Pharm. Sci. 1995, 3, 77-85. https://doi.org/10.1016/0928-0987(94)00077-D
  24. Keum, Y.S.; Park, K.Y.; Lee, J.M.; Chun, K.S.; Park, J.H.; Lee, S.K.; Kwon, H.J.; Surh, Y.J. Cancer Lett. 2000, 150, 41-48. https://doi.org/10.1016/S0304-3835(99)00369-9
  25. Kim, D.H. J. Ginseng Res. 2012, 36, 1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  26. Lee, M.J.; Choi, J.S.; Woo, S.W.; Lee, K.S.; Lee, Z.W.; Hwang, G.S.; Lee, S.H.; Kamal, A.H.M.; Jung, Y.A.; Seung, N.S.; Woo, S.H. Process Biochem. 2011, 46, 258-264. https://doi.org/10.1016/j.procbio.2010.08.020

Cited by

  1. Characterization of a Novel Ginsenoside MT1 Produced by an Enzymatic Transrhamnosylation of Protopanaxatriol-Type Ginsenosides Re vol.10, pp.4, 2018, https://doi.org/10.3390/biom10040525
  2. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review vol.51, pp.4, 2018, https://doi.org/10.1080/10408347.2020.1736506