DOI QR코드

DOI QR Code

Salicylate가 성체줄기세포의 골분화에 미치는 영향

Salicylate Can Enhance Osteogenic Differentiation of Human Periosteum-derived Mesenchymal Stem Cells

  • Kim, Bo Gyu (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Lee, A ram (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Lee, Bo Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Shim, Sungbo (Department of Biochemistry, Chungbuk National University) ;
  • Moon, Dong kyu (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Byun, June-Ho (Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
  • 투고 : 2018.10.10
  • 심사 : 2018.10.22
  • 발행 : 2018.12.30

초록

최근 들어 급속한 고령화 사회가 진행되고 있으며 이로 인해 골관절염과 골다공증 등의 퇴행성 골질환 환자수도 동반하여 증가하고 있다. 따라서 고령화에 따른 골관련 질환의 새로운 제어와 치료법 개발을 위해 성체줄기세포의 골세포 분화유도를 활용한 재생의학도 활발히 연구되고 있다. 또한 관련 연구에서 줄기세포의 분화과정에서 미토콘드리아의 산화적인산화가 중요하다고 알려지고 있다. 흥미롭게도 최근 연구에서 아스피린의 주성분인 salicylate가 동물세포의 미토콘드리아 생합성을 증진시키는 효과가 보고되었다. 그러나 성체줄기세포에서 salicylate가 골세포분화나 미토콘드리아 생합성을 유도할 수 있는지에 대한 연구결과는 미비한 실정이다. 본 연구에서는 인체 골막 유래의 성체줄기세포를 이용하여 골세포분화나 미토콘드리아 생합성에 대한 salicylate의 영향을 분석하였다. 골막 유래 성체줄기세포의 골세포 분화유도 과정에 동반한 salicylate 처리는 잘 알려진 골세포분화 표지자인 alkaline phosphatase의 활성을 증가시키는 결과를 본 연구에서 얻었다. 이러한 연구결과는 salicylate가 줄기세포로부터 골세포로의 분화를 조절할 수 있는 물질이 될 수 있음을 제시한다. 또한 이러한 골세포 분화과정에서 미토콘드리아 생합성도 salicylate 처리에 의해 증가됨이 관찰되었다. 따라서, 미토콘드리아 생합성이나 기능을 조절하는 물질이 성체줄기세포의 골세포 분화과정에도 영향을 줄 수 있으며, 이러한 물질이 골세포분화나 재생의학의 새로운 조절 물질로 응용될 수 있음을 제시한다.

Due to a rapidly expanding aging population, the incidence of degenerative bone disease has increased, and efforts to handle the issue using regenerative medicine have become more important. In order to control various bone diseases such as osteoarthritis and osteoporosis, regenerative medicine utilizing adult stem cells has been extensively studied. And it is now clear that the mitochondrial energy metabolism, oxidative phosphorylation, is important for the process of stem cell differentiation. Interestingly, a recent study reported that salicylate promotes mitochondrial biogenesis by regulating the expression of $PGC-1{\alpha}$ in murine cells. However, the possible effects of salicylate on osteogenic differentiation through increased mitochondrial biogenesis in stem cells remain unknown. Thus, here we investigated whether salicylate could influence osteogenic differentiation and mitochondrial biogenesis of periosteum-derived mesenchymal stem cells (POMSCs). We found that salicylate treatments of POMSCs undergoing osteogenic differentiation increased the activity of alkaline phosphatase, a well-known early marker of bone cell differentiation. In addition, we observed that mitochondrial mass was increased by salicylate treatments in POMSCs. Together, these results indicate that salicylate can enhance osteogenic differentiation and mitochondrial biogenesis in POMSCs. Therefore, the findings in this study suggest that small molecules augmenting mitochondrial function such as salicylate can be a novel modulator for osteogenic differentiation and regenerative medicine.

키워드

SMGHBM_2018_v28n12_1455_f0001.png 이미지

Fig. 1. Effects of salicylate on the proliferation and viability of POMSCs.

SMGHBM_2018_v28n12_1455_f0002.png 이미지

Fig. 2. Effects of salicylate on osteogenic differentiation of POMSCs.

SMGHBM_2018_v28n12_1455_f0003.png 이미지

Fig. 3. Effects of salicylate on mitochondrial biogenesis during osteogenic differentiation of POMSCs.

SMGHBM_2018_v28n12_1455_f0004.png 이미지

Fig. 4. Visualization and quantitation of mitochondrial biogenesis during osteogenic differentiation of POMSCs.

참고문헌

  1. Agata, H., Asahina, I., Yamazaki, Y., Uchida, M., Shinohara, Y., Honda, M. J., Kagami, H. and Ueda, M. 2007. Effective bone engineering with periosteum-derived cells. J. Dent. Res. 86, 79-83. https://doi.org/10.1177/154405910708600113
  2. Baroni, M. D., Colombo, S. and Martegani, E. 2018. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb. Cell 5, 344-356. https://doi.org/10.15698/mic2018.07.640
  3. Bergman, O. and Ben-Shachar, D. 2016. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes. Can. J. Psychiatry 61, 457-469. https://doi.org/10.1177/0706743716648290
  4. Breitbart, A. S., Grande, D. A., Kessler, R., Ryaby, J. T., Fitzsimmons, R. J. and Grant, R. T. 1998. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg. 101, 567-574. https://doi.org/10.1097/00006534-199803000-00001
  5. Chen, G., Deng, C. and Li, Y. P. 2012. TGF-${\beta}$ and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272-288. https://doi.org/10.7150/ijbs.2929
  6. Chung, J. E., Park, J. H., Yun, J. W., Kang, Y. H., Park, B. W., Hwang, S. C., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2016. Cultured human periosteum-derived cells can differentiate into osteoblasts in a perioxisome proliferator-activated receptor gamma-mediated fashion via bone morphogenetic protein signaling. Int. J. Med. Sci. 13, 806-818. https://doi.org/10.7150/ijms.16484
  7. Ferretti, C. and Mattioli-Belmonte, M. 2014. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J. Stem Cells 6, 266-277. https://doi.org/10.4252/wjsc.v6.i3.266
  8. Hah, Y. S., Joo, H. H., Kang, Y. H., Park, B. W., Hwang, S. C., Kim, J. W., Sung, I. Y., Rho, G. J., Woo, D. K. and Byun, J. H. 2014. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. Int. J. Med. Sci. 11, 1116-1128. https://doi.org/10.7150/ijms.9611
  9. Hutmacher, D. W. and Sittinger, M. 2003. Periosteal cells in bone tissue engineering. Tissue Eng. 9, 45-64. https://doi.org/10.1089/10763270360696978
  10. Huttemann, M., Lee, I., Samavati, L., Yu, H. and Doan, J. W. 2007. Regulation of mitochondrial oxidative phosphorylation through cell signaling. BBA 1773, 1701-1720.
  11. Ito, K. and Suda, T. 2014. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256. https://doi.org/10.1038/nrm3772
  12. Kakehata, S. and Santos-Sacchi, J. 1996. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J. Neurosci. 16, 4881-4889. https://doi.org/10.1523/JNEUROSCI.16-16-04881.1996
  13. Mao, A. S. and Mooney, D. J. 2015. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 112, 14452-14459. https://doi.org/10.1073/pnas.1508520112
  14. Oryan, A., Kamali, A., Moshiri, A. and Eslaminejad, B. M. 2017. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs 204, 59-83. https://doi.org/10.1159/000469704
  15. Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells. Arch. Oral Biol. 52, 983-989.
  16. Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. 2008. Vascular endothelial growth factor expression in cultured periosteal-derived cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105, 554-560. https://doi.org/10.1016/j.tripleo.2007.08.018
  17. Park, H. C., Son, Y. B., Lee, S. L., Rho, G. J., Kang, Y. H., Park, B. W., Byun, S. H., Hwang, S. C., Cho, I. A., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2017. Effects of osteogenic-conditioned medium from human periosteumderived cells on osteoclast differentiation. Int. J. Med. Sci. 14, 1389-1401. https://doi.org/10.7150/ijms.21894
  18. Park, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Kim, D. R., Woo D. K. and Byun, J. H. 2017. Lin28a enhances in vitro osteoblastic differentiation of human periosteum-derived cells. Cell Biochem. Funct. 35, 497-509. https://doi.org/10.1002/cbf.3305
  19. Rammelt, S., Neumann, M., Hanisch, U., Reinstorf, A., Pompe, W., Zwipp, H. and Biewener, A. 2005. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A. 73, 284-294.
  20. Ringe, J., Leinhase, I., Stich, S., Loch, A., Neumann, K., Haisch, A., Haupl, T., Manz, R., Kaps, C. and Sittinger, M. 2008. Human mastoid periosteum-derived stem cells: promising candidates for skeletal tissue engineering. J. Tissue Eng. Regen. Med. 2, 136-146. https://doi.org/10.1002/term.75
  21. Rhy, Y. M., Hah, Y. S., Park, B. W., Kim, D. R., Roh, G. S., Kim, J. R., Kim, U. K., Rho, G. J., Maeng, G. H. and Byun, J. H. 2011. Osteogenic differentiation of human periostealderived cells in a three-dimensional collagen scaffold. Mol. Biol. Rep. 38, 2887-2894. https://doi.org/10.1007/s11033-010-9950-3
  22. Schafer, R., Spohn, G. and Baer, P. C. 2016. Mesenchymal stem/stromal cells in regenerative medicine: Can preconditioning strategies improve therapeutic efficacy? Transfus. Med. Hemother. 43, 256-267. https://doi.org/10.1159/000447458
  23. Steinberg, G. R., Dandapani, M. and Hardie, D. G. 2013. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol. Metab. 24, 481-487. https://doi.org/10.1016/j.tem.2013.06.002
  24. Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. and Eliseev, R. A. 2016. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114-122. https://doi.org/10.1089/scd.2015.0193
  25. Shyam, H., Singh, S. K., Kant, R. and Saxena, S. K. 2017. Mesenchymal stem cells in regenerative medicine: a new paradigm for degenerative bone diseases. Regen. Med. 12, 111-114. https://doi.org/10.2217/rme-2016-0162
  26. Yan, Y., Yang, X., Zhao, T., Zou, Y., Li, R. and Xu, Y. 2017. Salicylates promote mitochondrial biogenesis by regulating the expression of PGC-1${\alpha}$ in murine 3T3-L1 pre-adipocytes. Biochem. Biophys. Res. Commun. 491, 436-441. https://doi.org/10.1016/j.bbrc.2017.07.074
  27. Yoon, D. K., Park, J. S., Rho, G. J., Lee, H. J., Sung, I. Y., Song, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Woo, D. K., Cho, Y. C. and Byun, J. H. 2017. The involvement of histone methylation in osteoblastic differentiation of human periosteum-derived cells cultured in vitro under hypoxic conditions. Cell Biochem. Funct. 35, 441-452. https://doi.org/10.1002/cbf.3302