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Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled 
if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole 
body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic 
regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency 
of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were 
taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the 
variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues 
subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale 
ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously 
(p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion 
in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.

Keywords：Electromyography, Logistic Regression, Whole Body Fatigue, Fatigue Modeling, Musculoskeletal Disorders

1. Introduction1)

Modeling of physical fatigue has been a challenging phe-
nomenon as there are numerous factors that contribute to 
it. Due to the multidimensional nature of the fatigue, different 
factors are incorporated for its assessment [32]. The factors 
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may include psychological, environmental or socioeconomic 
[36]. In regard to the different industrial setting concerning 
the occupational health, scheduled rest breaks play an im-
portant role in fatigue management. Fatigue may also have 
indirect implications such as falls or limited visual fields 
which also contribute to most frequent type of injuries in 
construction industry [22, 23]. Physical fatigue is an accu-
mulating phenomenon involving repetitive tasks [31], there-
fore wrong assessment of fatigue may lead to work related 
musculoskeletal disorders (WMSD). WMSD’s have been 
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classified as the most prevalent occupational medical con-
dition by the European Risk Observatory report [27]. Recent 
trends in wearable sensors have made it possible to collect 
real time data thus making it possible to detect muscle fatigue 
[28]. Among different tasks being performed in industry squat 
lifting in a demanding task that involved both upper and 
lower body exertion. Over exertion in such case causes loss 
of working hours to the industry in the form of errors and 
accidents. 

Fatigue is a gradual phenomenon and the precursors of 
fatigue sometimes get un-noticed. As the change in magni-
tude of the precursors is small at the early onset of fatigue, 
therefore it is not a good practice to rely on only one type 
of variable to be chosen for fatigue detection [9]. 

However with proper quantification of such variables cer-
tain interventions can be made for the onset of fatigue [8]. 
The variables selected for fatigue quantification may infer 
to a single muscle or the body as a whole [1]. Therefore 
careful selection of variables used in quantification of fatigue 
is important for the type of fatigue to be detected [30]. Indu-
strial settings involving squat lifting often design the rest 
brakes based on whole body fatigue therefore it is important 
to take the variables that contribute to whole body fatigue. 
Borg [6, 7] constructed a scale ranging from 0-10 to address 
the issue of whole body fatigue. Main aim was to correlate 
any physiological variable to a scale. He used heart rate as 
basis to construct the scale. Similarly oxygen uptake is also 
marked as assessment methods and has been used to assess 
athletes’ performance [4]. Among all the techniques used to 
acquire physiological data, wearable sensors, such as heart 
rate sensor and remote EMG modules have made it easier 
for on field assessment of fatigue. 

EMG signals are mainly used in the domains of muscle 
force, muscle geometry and the fatigue assessments. For the 
reliable assessment of fatigue accurate measurements are very 
important. Electromyography (EMG) has long been used to 
assess fatigue level by researchers for manual lifting. Among 
the noninvasive methods, surface electromyography (sEMG) 
has been used widely to quantify muscle fatigue [2, 3]. 
However, due to non-stationarity of the EMG signals, the 
frequency domain indexes of EMG have been preferred over 
the time-indexes to detect the muscle fatigue. Among such 
index is the Mean power frequency (MNF) of the EMG sig-
nal [15]. Studies has shown that the MNF can be used to 
detect the muscle fatigue in dynamic muscle contraction [10]. 
The decrease in Mean power frequency of the sEMG signal 

signifies the onset of the muscle fatigue and has been used 
in various clinical settings [17]. Squat lifting is one of the 
task involving the dynamic contraction of muscles of upper 
and lower extremity. Spectral changes in EMG signals have 
helped researchers gain insight of the muscles involved [35]. 
Thus combined EMG signals from major muscles involved 
in a task can help predict or classify the fatiguing process. 

Classification of fatigue while combing the physiological 
and perceived exertion has scarcely been studied. One way 
to study the combined effect of different variables on an out-
put is the Logistic regression [20]. Among the multivariate 
methods, Logistic regression is widely used in healthcare sci-
ences [34]. It has been used in classifying fatigued and 
non-fatigued local muscle fatigue state, using EMG as well 
as EEG in detecting game addicted subjects [12, 37]. Unlike 
linear regression which uses least square error to minimize 
the error, the logistic regression uses maximum likelihood. 
With the advent of new technologies, it is able to get large 
data set thus making learning algorithms able to make better 
decisions. Attempts have been made to translate these tech-
nologies to be used in fatigue detection systems [16, 28]. 
However these studies used motion sensors and heart rate 
to evaluate the whole body fatigue. The contribution of dif-
ferent body extremities in dynamic lifting task can help better 
assessment of whole body fatigue. This can be done by 
studying the combined effect of physiological indicators as 
well as the psychological variable and then evaluating the 
effect of each variable. 

In the light of above discussion, this study aims to develop 
a learning algorithm based on logistic regression that har-
nesses the power of sEMG large data set combines with per-
ceived exertion of lower and upper extremity of the body 
and detect the whole body fatigue based on contribution of 
all the variables involved. The dynamic squat lifting task was 
used to recruit major muscles of lower and upper extremity. 
The data has been taken from our previously previous study 
[1]. The second part of the study was included in which 
the subjects lifted 8 kg weight for 24 sets of squats.  

2. Material and Methods

2.1 Samples

For this study 25 male subjects between the ages of 28~32 
were recruited from the student population with no history 
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of low back pain [13]. This study was approved by Hanyang 
University Institutional Review board (IRB) bio ethics com-
mittee, South Korea. Each subject signed an informed an 
informed consent before the start of experimental trials. All 
the trials were randomized to avoid biasness.  

2.2 Muscle Selection and Location of Electrodes 

Surface electrodes (Ag-Ag/Cl) were used with bipolar 
configuration with an inter electrode distance of 20mm. EMG 
signals recorded from eight muscles which include divided 
into the upper extremity and the lower extremity. The mus-
cles for the lower extremity included Bicep femoris (BF), 
rectus Femoris (RF), Vastus lateralis (VL) and gastrocnemius 
medialis (GS), while for the lower extremity they included 
anterior deltoid (AD), upper trapezius (UT), supraspinatus 
(SP) and  medial deltoid (MD) [13, 28]. SENIAM recom-
mendations were used for the placement and location of elec-
trodes [21, 29]. For the bicep femoris, the electrode was 
placed at 50% on the line of the ischial tuberosity and the 
lateral epicondyle of the tibia. For the anterior deltoid, the 
electrodes were placed at one finger width away and anterior 
to the acromion. For the medial deltoid, the electrodes were 
placed 3 cm below the acromion, over the muscle bulk, 
aligned with the muscle fibers [26]. For the vastus lateralis, 
electrodes were placed at 2/3 on the line from the anterior 
spina iliaca superior to the lateral side of the patella. For 
the rectus femoris, the electrodes were placed at 50% on 
the line from the anterior spina iliaca superior to the superior 
part of the patella. For the gastrocnemius medialis, the sub-
jects laid supine. The knee was extended and the foot flexed. 
Electrode was placed on the most prominent bulge of the 
muscle. For upper trapezius the electrodes were placed at 
50% on the line from the acromion to the spine on vertebra 
C7. The supraspinatus electrodes were placed over the supra-
scapular fossa [26]. Maximum voluntary contraction for each 
muscle was attainted for the normalization of EMG signal 
for each muscle. 

2.3 Data Acquisition and Processing

For the acquisition of EMG signals, an eight channel ME 
6,000 Bittium Bio signals Ltd EMG system was used while 
for the heart rate, Polar heart rate censor was used [24]. The 
sampling frequency was set to 1,024 Hz. Movement artifacts 
and the noise was filtered by using band pass filter 10~500 

Hz for the EMG signals. For muscle activation, Root Mean 
Square (RMS) value was used to find the onset and off set 
of the muscles [1]. The Normalized Mean Power Frequency 
(NMPF) of all the muscles at each was obtained for all the 
squat sets.

3. Experiment Design

A uniformly distributed 8kg box was used as lifting weight. 
The box had handle on each side. For this study, the perceived 
whole body fatigue was taken as the dependent variable which 
was categorized into fatigue and non-fatigued conditions for 
the sigmoid function. The slopes of the normalized EMG, 
heart rate and the perceived exertions from the two regions 
were taken as the independent variable to model the transition 
to fatigue was taken as independent variables.  

3.1 Procedure 

Subjects stood straight facing the lifting box adjusted to 
the elbow high. Each subject had to perform the pilot test 
and the experiment trial in two different sessions. During 
the pilot test, the subject’s verbal evaluation regarding the 
sensation of fatigue in the upper extremity, the lower ex-
tremity and the whole body was done. In the second session, 
the experiment was performed. The subjects had to perform 
24 sets of squats with ten seconds interval between each 
squat. Same three regional sensation of fatigue was evaluated 
in the trial. Along with the perceived exertion, the EMG sig-
nals and the heart rate was monitored.  

<Figure 1> Symmetric Lifting and Lowering of the Lifting 

Box [1]
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3.2 Statistical Analysis

For the Borg Scale readings of the perceived exertions 
intra-class correlation coefficient was used for test-retest reli-
ability, (ICC index 0.71~0.86). <Table 1> shows the statisti-
cal summary of the RPEs of the lower and upper extremity. 
For the mean power frequencies, the normality check was 
performed on each muscle. Significance of each variable was 
checked. Hosmer-lemeshow test was performed on the model to 
check if it performs well for the predicted outcome. Deviance 
of each outcome was plotted against fitted probability to 
check how well fatigued and non-fatigued 

<Table 1> Statistics Summary for Rates of Perceived Exertion

Squat 
set

Ratings of Perceived Exertions

Upper extremity Lower extremity

Average Std Dev Average Std Dev

4 2.32 1.06 2.04 0.89
8 2.96 0.97 3.32 0.85

12 3.44 0.89 3.92 0.75
16 3.92 0.98 4.48 0.824
20 4.52 0.98 5.56 0.926
24 5.32 1.12 5.96 0.955

3.3 Model Development

Main aim of the study was to combine the effect of physio-
logical indicators of fatigue which include the normalized 
mean power frequency from the eight major muscles of up-
per and lower extremity, the heart rate and the psychological 
indicators such as ratings of perceived exertion. There effect 
to perceive whole body fatigue was to be modeled as dichot-
omous variable. For this purpose value of RPE > 4 on Borg 
CR-10 scale for whole body fatigue was considered in fa-
tigue category while for the RPE. Therefore a model was 
made to predict the whole body fatigue and the determining 
the appropriate variables that are significant to the changes 
in whole body fatigue. 

One of the multivariable approach used to model multi-
variable problem is to use the logistic regression modeling. 
For this purpose, the logit function was used for the model 
development. The logistic regression for binary response fits 
a logistics curve y = f (x) for the relation between the binary 
outcome and all the variables. The curve usually starts with 
a very small slope and then increases exponentially followed 
by steady decrease in the end. As the dependent variable 

in this study was categorical therefore, the binary logistic 
regression was used to predict the fatigued and non-fatigued. 
A total of nine independent variables were used for the binary 
logistic regression. Which includes the NMPF from the eight 
muscles, heart rate and the Borg scale readings from the up-
per and lower extremity of the body. The probability of oc-
currence of an event is given by the following equation 

 


  ⋯⋯


  ⋯⋯

          (1)

Where
       = probability of event of interest
      βo = constant
      β1 = coefficient of independent variable X1 
      k = total number of features. 

Equation one was used to find the probability of fatigued 
subjects as given below

                 
′

′
(2)

For performing the logistic regression following the co-
efficients of all the features were determined. 

MPFmd Mean Power Frequency of Medial Deltoid Muscle
MPFad Mean Power Frequency of Medial Anterior Deltoid
MPFut Mean Power Frequency of Medial Deltoid Upper 

Trapezius
MPFsp Mean Power Frequency of Supraspinatus
MPFbf Mean Power Frequency of Medial Bicep femoris
MPFvs Mean Power Frequency of Vastus Laterlis
MPFgs Mean Power Frequency of gastrocnemius
MPFrf Mean Power Frequency of Rectus Femoris
RPEU Rate of perceived exertions for upper extremity
RPEL Rate of perceived exertion for lower extremity
HR Heart rate

Equation 3 shows the 11 independent varies along with 
the coefficients to be determined through logistic regression 
modeling. 

   ′  β0+β1MPFmd+β2MPFad+β3MPFut+β4MPFsp (3)
+β5MPFbf+β6MPFvs+β7MPFgs+β8MPFrf

+β9RPEU+β10RPEL+β11HR
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4. Results

The coefficients where found (<Table 2>) and it was ob-
served that among the mean power frequencies for the upper 
and lower extremity the anterior deltoid and the bicep femoris 
had the greatest absolute values of the coefficient respectively. 
For the ratings of perceived exertions of the upper and lower 
extremity, the lower extremity was observed to have greatest 
coefficient. The significance level of each variable was checked 
to see which variable is more significant in predicting the 
response variable. It was observed that the mean power fre-
quency of anterior deltoid, the rate of perceived exertion of 
the upper and lower extremity were found to be significant. 

However, the odds ratio was also taken under consid-
eration and it was observed that among the muscles, the AD, 
VS and the RF muscles had ratios greater than one with 
AD and RF having very high odd ratio. By looking at the 
p values, the RF and the VS muscles having not significant 
p values but as the purpose of the p value is how likely 
we expect the more extreme data then the observed data un-
der the model with given restrictions. The odds ratio is also 
considered for this mode. Considering the coefficients, among 
the muscles of upper extremity the anterior deltoid has the 
highest coefficient, among the lower extremity the bicep fe-
moris has the highest coefficient while the heart rate also 
has high coefficient. 

<Table 2> Coefficients of Variables and Significance

Variable Coefficient  Chi-square p-value

MPFmd -3.48 0.54 0.464
MPFad 16.87 14.82   0.01*

MPFut -3.37 0.85 0.356
MPFsp -4.75 1.17 0.280
MPFbf -5.25 0.82 0.367
MPFvs 1.68 0.30 0.582
MPFgs -3.26 0.69 0.406
MPFrf 2.81 1.33 0.249
RPEU 2.038 8.71   0.01*

RPEL 2.653 51.33   0.01*

HR 5.47 0.63 0.428
*p < 0.01.

The delta deviance graph in <Figure 2> shows the differ-
ence between the experimental value and the values predicted 
by the model fit. Each data point has been plotted against 
its probability. The event probabilities for the fatigued and 
the non-fatigued state are shown in the curves. 

The curve from top left to bottom right shows that there 
is a high probabilities of event as fatigued at bottom right. 
The curves show a low probability at the top left to be de-
tected as non-fatigued The curve from top left to the bottom 
right represents the fatigued subjects while the curve from 
the top right to the bottom left represents the non-fatigued 
subjects. Both represents good fits as both have low delta 
deviance for fatigued and non-fatigues states. 

<Figure 2> Delta Deviance Plotted Against the Event Pro-

bability 

The model accuracy was checked for both fatigued and 
non-fatigued state. When fatigue was incorporated as event 
of interest in the model, the accuracy was 83% while for 
the non-fatigued subjects as main event, the accuracy was 
93%. The percent of event detected as non-fatigued in fatigue 
as main event was 9% and for fatigued in non-fatigued event 
was 17%. The hosmer-lemeshow test was performed (p > 
0.05) which is a strong finding that the model fits well. 

5. Discussion  sign

This study was an attempt to model whole body fatigue 
which is the first indicator by the subject to experience fatigue. 
The model combined eleven different variables from major 
perceived regions of the body. The modeled showed a high 
accuracy of 83% and 91% in fatigued and non-fatigued sub-
jects respectively. In particular it was observed the perceived 
upper and lower extremity perceived exertions and the NMPF 
of the anterior deltoid were the most significant variables 
in the logistic regression modeling. This study provides ad-
vantage of combining different types of features used as 
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<Figure 3> Probability of Detecting Fatigue and Non-Fatigue

Events Under Two Different Conditions

indicators of fatigue rather than single type of feature as done 
by previous studies. Secondly the dichotomous response help 
in easy interpretation which has been used as perceived whole 
body fatigue [3]. 

The overall purpose of this study was to find the effect 
of contributing physiological and perceived indicators of fa-
tigue on whole body fatigue. Fatigue related musculoskeletal 
disorders are important concern in different manufacturing 
environments, therefore its monitoring needs to be as accu-
rate as possible. Borg [6] in his regard attempted to quantify 
the perceived exertion. Most of the studies that used Borg 
and other variables used a pre-defined setting to keep the 
muscle activity as constant as possible across all he subjects, 
such as cycle ergometer [10]. These clinical settings often 
tend to focus on one type of muscle and neglect the effect 
of different indicators contributing to whole body fatigue [5, 
13]. However there are few studies that involve integration 
of multiple fatigue indicators modeled to develop fatigue 
monitoring system driven by the data obtained through wear-
able sensors [28].  

For this study, the Mean power frequencies of eight major 
muscles, heart rate and the Borg rating of perceived exertion 
was used in logistic regression. To our knowledge, no other 
studies have used these variables for dynamic squat lifting. 
Therefore, the dynamic squat lifting was simulated in lab 
for 24 sets of squats on 25 subjects. The dependent variable, 
which was a dichotomous variable representing the whole 
body fatigue provided vital results that can be used to devel-
op work rest framework and help in prevention of muscu-
loskeletal disorders. All the coefficient of the independent 
variables that represents the best model fit were shown in 
<Table 2>. Previous mostly used only EMG or ratings of 
perceived exertion alone to assess fatigue [11, 17, 14, 33]. 

The logistic regression modelling used for this study yiel-
ded high accuracy for both fatigued and non-fatigues states 
as shown in <Figure 3>. Different studies have used different 
modeling approaches such as the three compartment approach 
[18], dynamic modelling [19] or decision tree approach [25]. 
Main reason is that EMG data contains log of noise and 
the signal to noise ratio is quite high. Not only in the power 
frequency variable but also in the perceived response. In such 
cases, the logistic regression performs better than the decision 
tree. Another advantage of using logistic regression for this 
fatigue detection model is that the linear relation between 
the whole body fatigue and other 11 variables have not to 
be considered. The logistic regression handles the nonlinear 

relation between the dependent and independent variable in 
a much better way.  

The study has some limitations as it took into account 
only male population, the perceived female effort might be 
different. However as this study was focused on the manu-
facturing sector, which is being dominated by the male popu-
lation globally, therefore only male subjects were consi-
dered. Among the two lifting techniques of stoop and squat 
lifting, this study included squat lifting, therefore stoop lifting 
will generate different results. However this study was de-
signed to incorporate major muscle therefore squat lifting 
was introduced. For the grip of the lifting box proper lifting 
handles were used which in some cases might differ while 
lifting therefore some discrepancies in the results may occur 
regarding the change of grip conditions. 

6. Conclusion 

The logistic regression modeled perceived whole body fa-
tigue with a total of 11 number of independent variables. 
The mean power frequency of the anterior deltoid muscle, 
the rectus femoris and the perceived lower extremity were 
found to be significantly effecting the perceived whole body 
fatigue. The model can be used in applied ergonomics for 
designing rest/work schedules and prevention of musculo-
skeletal disorders. 
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