DOI QR코드

DOI QR Code

제주 화산석으로 합성한 제올라이트를 Polyacrylonitrile에 고정화한 흡착제를 이용한 구리와 스트론튬 이온의 제거

Removal of Cu and Sr Ions using Adsorbent Obtained by Immobilizing Zeolite Synthesized from Jeju Volcanic Rocks in Polyacrylonitrile

  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2018.09.17
  • 심사 : 2018.10.26
  • 발행 : 2018.12.31

초록

In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at $20^{\circ}C$ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.

키워드

참고문헌

  1. Ahmadpour, A., Zabihi, M., Tahmasbi, M., Bastami, T. R., 2010, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182, 552-556. https://doi.org/10.1016/j.jhazmat.2010.06.067
  2. Barakat, M. A., 2008, Adsorption of heavy metals from aqueous solutions on synthetic zeolite, Res. J. Environ. Sci., 2(1), 13-22. https://doi.org/10.3923/rjes.2008.13.22
  3. Bascetin, E., Atun, G., 2009, Adsorptive removal of strontium by binary mineral mixtures of montmorillonite and zeolite. J. Chem. Eng. Data, 55(2), 783-788. https://doi.org/10.1021/je9004678
  4. Chaisena, A., Rangsriwatananon, K., 2005, Synthesis of sodium zeolites from natural and modified diatomite, Mater. Lett., 59(12), 1474-1479. https://doi.org/10.1016/j.matlet.2004.10.073
  5. Duruibe, J. O., Ogwuegbu, M. O. C., Egwurugwu, J. N., 2007, Heavy metal pollution and human biotoxic effects, Int. J. Physi. Sci., 2(5), 112-118.
  6. El-Dessouky, M. I., El-Naggar, M. R., El-Rahman, K. M. A., El-Kamash, A. M., 2011, Thermodynamic and fixed bed studies for the removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using fly ash based Na A-X zeolite blend, Interna. J. Environ. Eng. Sci., 2, 117-134.
  7. El-Kamash, A. M. E., 2008, Evaluation of zeolite A for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater., 151, 432-445. https://doi.org/10.1016/j.jhazmat.2007.06.009
  8. Faghihian, H., Godazandeha, N., 2009, Synthesis of nano crystalline zeolite Y from bentonite, J. Porous Mater., 16(3), 331-335. https://doi.org/10.1007/s10934-008-9204-0
  9. Faghihian, H., Iravani, M., Moayed, M., Ghannadi-Maragheh, M., 2013, Preparation of a novel PAN-zeolite nanocomposite for removal of $Cs^+$ and $Sr^{2+}$ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies, J. Chem. Eng., 222, 41-48. https://doi.org/10.1016/j.cej.2013.02.035
  10. Hamdaoui, O., 2006, Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, J. Hazard. Mater., 135(13), 264-273. https://doi.org/10.1016/j.jhazmat.2005.11.062
  11. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827. https://doi.org/10.1002/cjce.5450760419
  12. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127(1-3), 89-101. https://doi.org/10.1016/j.jhazmat.2005.06.027
  13. Ismail, M., Eltayeb, M., Maged, S. A., 2013, Synthesis of zeolite A from sudanese montmorillonite clay to remove nickel and copper ions from aqueous Solutions, Int. J. Chem. Biochem. Sci., 4, 46-56.
  14. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju scoria, J. Environ. Sci., 20(10), 1337-1345.
  15. Kam, S. K., Lee, C. H., Jeong, K. S., Lee, M. G., 2016a, Fabrication of PAN/FZ beads via immobilization of zeolite prepared from coal fly ash with polyacrylonitrile and their Sr and Cu removal characteristics, J. Environ. Sci. Int., 25(12), 1613-1622. https://doi.org/10.5322/JESI.2016.25.12.1613
  16. Kam, S. K., Lee, C. H., Jeong, K. S., Lee, M. G., 2016b, Removal characteristics of Sr and Cu ions using PS-FZ beads fabricated by immobilization of zeolite prepared from coal fly ash from an Ulsan industrial complex with polysulfone, J. Environ. Sci. Int., 25(12), 1623-1632. https://doi.org/10.5322/JESI.2016.25.12.1623
  17. Kocherginsky, N. M., Zhang, Y. K., Stucki, J. W., 2002, D2EHPA based strontium removal from strongly alkaline nuclear waste, Desalination, 144(1-3), 267-272. https://doi.org/10.1016/S0011-9164(02)00326-0
  18. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  19. Lee, C. H., Park, J. M., Kam, S. K., Lee, M. G., 2015, Adsorption characteristics of Sr ion and Cs ion by a novel PS-zeolite adsorbent immobilized zeolite with polysulfone, J. Environ. Sci. Int., 24(5), 671-678. https://doi.org/10.5322/JESI.2015.24.5.671
  20. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23, 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  21. Lee, C. H., Suh, J. H., 2009, Adsorption characteristics of cobalt ion with zeolite synthesized by coal fly ash, KSEE, 31(11), 941-946.
  22. Merceille, A., Weinzaepfel, E., Barre, Y., Grandjean, A., 2012, The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep. Purif. Technol., 96, 81-88. https://doi.org/10.1016/j.seppur.2012.05.018
  23. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., Zarghami, R., 2011, Adsorption of cesium on copper hexacyanoferrate PAN composite ion exchanger from aqueous solution, Chem. Eng. J., 172(1), 572-580. https://doi.org/10.1016/j.cej.2011.06.011
  24. Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., Trari, M., 2010, Adsorption of $Zn^{2+}$ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies, J. Hazard. Mater., 173(1-3), 637-646. https://doi.org/10.1016/j.jhazmat.2009.08.132
  25. Park, Y., Lee, Y. C., Shin, W. S., Choi, S. J., 2010, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate polyacrylonitrile (AMP-PAN), Chem. Eng. J., 162(2), 685-695. https://doi.org/10.1016/j.cej.2010.06.026
  26. Saberi, R., Nilchi, A., Rasouli Garmarodi, S., Zarghami, R., 2010, Adsorption characteristic of $^{137}Cs$ from aqueous solution using PAN-based sodium titanosilicate composite, J. Radioanal. Nucl. Chem., 284(2), DOI: 10.1007/s10967-010-0499-3
  27. Sebesta, F., John, J., 1995, An Overview of the development, testing, and application of composite absorbers. Los Alamos National Lab., NM (United States). Funding organisation: USDOE, Washington, DC (United States).
  28. Shakir, K., Sohsah, M., Soliman, M., 2007, Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation, Sep. Purif. Technol., 54(3), 373-381. https://doi.org/10.1016/j.seppur.2006.10.006
  29. Sekar, M., Sakthi, V., Rengaraj, S., 2004, Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci., 279(2), 307-313. https://doi.org/10.1016/j.jcis.2004.06.042
  30. Singh, B. K., Tomar, R., Tomar, R., Tomar, S. S., 2011, Sorption of homologues of radionuclides by synthetic ion exchanger, Micropor. Mesopor. Mater., 142, 629-640. https://doi.org/10.1016/j.micromeso.2011.01.006
  31. Smiciklas, I., Dimovic, S., Plecas, I., 2007, Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite, Appl. Clay Sci., 35(1), 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  32. Weber, W. J., Morris, J. C., 1962, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE., 89, 31-59.
  33. Xie, F., Lin, X., Wu, X., Xie, Z., 2008, Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry, Talanta, 74(4), 836-843. https://doi.org/10.1016/j.talanta.2007.07.018
  34. Yadav, A. K., Abbassi, R., Gupta, A., Dadashzadeh, M., 2013, Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane, Ecol. Eng., 52, 211-218. https://doi.org/10.1016/j.ecoleng.2012.12.069