References
- Meenakshi S., Umayaparvathi S., Arumugam M. and Balasubramanian T. 2011. In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac. J. Trop. Biomed. 1(1, Supplement), S66-S70. https://doi.org/10.1016/S2221-1691(11)60126-3
- Cavas L. and Yurdakoc K. 2005. An investigation on the antioxidant status of the invasive alga Caulerpa racemosa var. cylindracea (Sonder) Verlaque, Huisman, et Boudouresque (Caulerpales, Chlorophyta). J. Exp. Mar. Biol. Ecol. 325(2), 189-200. https://doi.org/10.1016/j.jembe.2005.05.002
- Huang H.-L. and Wang B.-G. 2004. Antioxidant Capacity and Lipophilic Content of Seaweeds Collected from the Qingdao Coastline. J. Agri. Food Chem. 52(16), 4993-4997. https://doi.org/10.1021/jf049575w
- Mayer A. M., Rodriguez A. D.,, Berlinck R. G. and Hamann M. T. 2009. Marine pharmacology in 2005-6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta. 1790(5), 283-308. https://doi.org/10.1016/j.bbagen.2009.03.011
- Tewari R. K., Kumar P., Sharma P. N. and Bisht S. S. 2002. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci. 162(3), 381-388. https://doi.org/10.1016/S0168-9452(01)00578-7
- Xiang, C. and D.J. Oliver, 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell. 10(9), 1539-50. https://doi.org/10.1105/tpc.10.9.1539
- Botterweck A. A., Verhagen H., Goldbohm R. A., Kleinjans J. and van den Brandt P. A. 2000. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study. Food Chem. Toxicol. 38(7), 599-605. https://doi.org/10.1016/S0278-6915(00)00042-9
- Augustyniak A., Bartosz G., Cipak A., Duburs G., Horakova L., Luczaj W., Majekova M., Odysseos A. D., Rackova L., Skrzydlewska E., Stefek M., Strosova M., Tirzitis G., Venskutonis P. R., Viskupicova J., Vraka P. S. and Zarkovic N. 2010. Natural and synthetic antioxidants: an updated overview. Free Radical Res. 44(10), 1216-62. https://doi.org/10.3109/10715762.2010.508495
- Wojcik M., Burzynska-Pedziwiatr I. and Wozniak L. A. 2010. A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem. 17(28), 3262-88. https://doi.org/10.2174/092986710792231950
- Kumar M., Gupta V., Kumari P., Reddy C. R. K. and Jha B. 2011. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Compos. Anal. 24(2), 270-278. https://doi.org/10.1016/j.jfca.2010.07.007
- Kumar C. S., Ganesan P., Suresh P. V. and Bhaskar N. 2008. Seaweeds as a source of nutritionally beneficial compounds-a review. J. Food Sci. Technol. 45(1), 1-13.
- Chan C. X., Ho C. L. and Phang S. M. 2006. Trends in seaweed research. Trends Plant Sci. 11(4), 165-6. https://doi.org/10.1016/j.tplants.2006.02.003
- Devi G. K., Manivannan K., Thirumaran G., Rajathi F. A. and Anantharaman P. 2011. In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac. J. Trop. Med. 4(3), 205-11. https://doi.org/10.1016/S1995-7645(11)60070-9
- Rodriguez-Bernaldo de Quiros A., Lage-Yusty M. A., and Lopez-Hernandez J. 2010. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 121(2), 634-638. https://doi.org/10.1016/j.foodchem.2009.12.078
- Kim S. J., Woo S., Yun H., Yum S, Choi E., Do J.-R., Jo J.-H., Kim D.-G., Lee S, Lee T.-K. 2005. Total Phenolic Contents and Biological Activities of Korean Seaweed Extracts. Food Sci. Biotech. 14(6), 798-802
- Yuan Y. V. and Walsh N. A. 2006. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44(7), 1144-1150. https://doi.org/10.1016/j.fct.2006.02.002
- Zhu Y. Z., Huang S. H., Tan B. K., Sun J., Whiteman M. and Zhu Y. C. 2004. Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat. Prod. Rep. 21(4), 478-89. https://doi.org/10.1039/b304821g
- Cassolato J. E., Noseda M. D., Pujol C. A., Pellizzari F. M., Damonte E. B. and Duarte M. E. 2008. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohyd. Res. 343(18), 3085-95. https://doi.org/10.1016/j.carres.2008.09.014
- Kwon H.-J., Bae S.-Y., Kim K.-H., Han C.-H., Cho S.-H., Nam S.-W., Choi Y. H. and Kim B.-W. 2007. Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem. 104(1), 196-201. https://doi.org/10.1016/j.foodchem.2006.11.031
- Kim A. R., Shin T. S., Lee M. S., Park J. Y., Park K. E., Yoon N. Y., Kim J. S., Choi J. S., Jang B. C., Byun D. S., Park N. K. and Kim H. R. 2009. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 57(9), 3483-9. https://doi.org/10.1021/jf900820x
- Hwang S. J., Kim Y. W., Park Y., Lee H. J. and Kim K. W. 2014. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. 63(1), 81-90. https://doi.org/10.1007/s00011-013-0674-4
- Yende S. R., Harle U.N. and Chaugule B.B. 2014. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 8(15), 1-7. https://doi.org/10.4103/0973-7847.125514
- Capannesi C., Palchetti I., Mascini M. and Parenti A. 2000. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 71(4), 553-562. https://doi.org/10.1016/S0308-8146(00)00211-9
- Wong K. H. and Cheung P. C. K. 2000, Nutritional evaluation of some subtropical red and green seaweeds: Part I - proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 71(4), 475-482. https://doi.org/10.1016/S0308-8146(00)00175-8
- Suh S. S., Hwang J., Park M., Park H. S. and Lee T.-K. 2014. Phenol content, antioxidant and tyrosinase inhibitory activity of mangrove plants in Micronesia. Asian Pac. J. Trop. Med. 7(7), 531-5. https://doi.org/10.1016/S1995-7645(14)60089-4
- Singh N. and Rajini P. S. 2004, Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85(4), 611-616. https://doi.org/10.1016/j.foodchem.2003.07.003
- Lu Y. and Foo L. Y. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68(1), 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
- Oktay M., Gulcin İ. and Kufrevioglu O.I. 2003, Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT - Food Sci. Technol. 36(2), 263-271. https://doi.org/10.1016/S0023-6438(02)00226-8
- Kim D. H., Kim H. J. and Chung B. W. 2006. Extraction of anti-oxidative substance from Haematococcus pluvialis using ultrasonification. J. Eng. Res. 37(0), 79-86.
- Calabro A. R., Konsoula R. and Barile F. A. 2008. Evaluation of in vitro cytotoxicity and paracellular permeability of intact monolayers with mouse embryonic stem cells. Toxicol. in vitro 22(5), 1273-84. https://doi.org/10.1016/j.tiv.2008.02.023
- Perez J., Hill B. G., Benavides G. A., Dranka B. P. and Darley-Usmar V. M. 2010. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochem. J. 428(2), 255-67. https://doi.org/10.1042/BJ20100090
- Raines E. W. 2004. PDGF and cardiovascular disease. Cytokine Growth F. R. 15(4), 237-54. https://doi.org/10.1016/j.cytogfr.2004.03.004
- Karki R., Ho O. M. and Kim D. W. 2013. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim. Biophys. Acta. 1830(3), 2619-28. https://doi.org/10.1016/j.bbagen.2012.12.015
- Costa L. S., Fidelis G. P., Telles C. B., Dantas-Santos N., Camara R. B., Cordeiro S. L., Costa M. S., Almeida-Lima J., Melo-Silveira R. F., Oliveira R. M., Albuquerque I. R., Andrade G. P. and Rocha H. A. 2011. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar. Drugs. 9(6), 952-66. https://doi.org/10.3390/md9060952
- Tannoury M. Y., Elia J. M., Saab A. M., Makhlouf H. Y., Abboud J. S., Daou-Chabo R. J. and Diab-Assaf M. 2016. Evaluation of Cytotoxic Activity of Sargassum vulgare From the Lebanese Coast Against Jurkat Cancer Cell Line. J. App. Pharm. Sci. 6(6), 108-112.
- Pinteus S., Lemos M. F. L., Silva J., Alves C., Neugebauer A., Freitas R., Duarte A. and Pedrosa R. 2017. An Insight into Sargassum muticum Cytoprotective Mechanisms against Oxidative Stress on a Human Cell In Vitro Model. Mar. Drugs. 15(11), 353 https://doi.org/10.3390/md15110353
- Lau T. Y., Vittal D. F., Chew C. S. Y. and Yong W. T. L. 2014. Antiproliferative Potential of Extracts from Kappaphycus Seaweeds on HeLa Cancer Cell Lines. Sains Malays. 43(12), 1895-1900. https://doi.org/10.17576/jsm-2014-4312-11
- Poussier, B., Cordova A. C., Becquemin J. P. and Sumpio B. E. 2005. Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis. J. Vasc. Surg. 42(6), 1190-7. https://doi.org/10.1016/j.jvs.2005.08.014