DOI QR코드

DOI QR Code

폐주석산화물로부터 환원공정 및 전해정련을 통한 치과용 고순도 주석 회수

Recovery of Tin with High Purity for Dental Materials from Waste Tin oxide by Reduction and Electro Refining

  • 정현철 (전북대학교 바이오나노시스템 공학과) ;
  • 김상열 (충남대학교 신소재공학과) ;
  • 이민호 (전북대학교 치의학전문대학원 치과생채재료학교실, 생체흡수성소재연구소 및 구강생체과학연구소(BK21 Plus사업))
  • Jung, Hyun-Chol (Department of Bio-Nano System Engineering, Chonbuk National University) ;
  • Kim, Sang-Yeol (Department of Materials Science & Engineering, Chungnam National University) ;
  • Lee, Min-Ho (Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and School of Dentistry (BK21 Plus Program), Chonbuk National University)
  • 투고 : 2018.10.26
  • 심사 : 2018.11.23
  • 발행 : 2018.12.28

초록

유리생산공정에서 발생하는 요업로 전극봉인 폐주석 산화물로부터 가스환원공정과 전해정련을 통하여 고순도 주석을 회수하기 위한 연구를 수행하였다. 메탄가스 환원공정을 통해 99% 순도의 조주석을 회수하고, 불순물을 미량 제어하였다. 주석의 전해정련시 전류밀도가 $60A/dm^2$이고 전해액의 황산농도가 0.75 mol일 때 99.979%의 고순도 주석이 96.8% 회수되었다. 그리고 전극봉에 포함된 Pb, Sb 등의 독성 불순물 제어가 가능함을 확인하였다.

In this study, using electro-refining process and methane gas reduction, we performed studying the recovery of tin with high purity from waste tin oxide had used as a electrode rod of ceramic furnace which occurred during glass production process. We recovered the crude tin of 99% purity from a methane gas reduction process and controlled a little amount of impurities. When the electrolytic refining condition was a current density of $60A/dm^2$ and the sulfuric acid concentration of 0.75 mol, 96.8% of recovered tin (99.979% of purity) were recovered during the electrolytic refining. We confirmed that toxic impurities such as Pb, Sb included in electrode rod. could be controlled.

키워드

RSOCB3_2018_v27n6_38_f0001.png 이미지

Fig. 1. Experimental flow for the recovery of high purity tin from waste tin oxide.

RSOCB3_2018_v27n6_38_f0002.png 이미지

Fig. 2. Sample of Tin Oxide.

RSOCB3_2018_v27n6_38_f0003.png 이미지

Fig. 3. The crude Tin obtained by gas reduction of waste tinoxide.

RSOCB3_2018_v27n6_38_f0004.png 이미지

Fig. 4. Impurity of electro-refined tin with current density(A/m2).

RSOCB3_2018_v27n6_38_f0005.png 이미지

Fig. 5. Pb purity of electro refined of tin with sulfuric acid concentration.

RSOCB3_2018_v27n6_38_f0006.png 이미지

Fig. 6. Sb purity of electro refined of tin by current density and sulfuric acid concentration.

Table 1. The components of waste Tin oxide

RSOCB3_2018_v27n6_38_t0001.png 이미지

Table 2. The condition of electro refining of Tin

RSOCB3_2018_v27n6_38_t0002.png 이미지

Table 3. The component of refined crude Tin

RSOCB3_2018_v27n6_38_t0003.png 이미지

Table 4. Amounts of Tin reduction and purity of electrolytic Tin

RSOCB3_2018_v27n6_38_t0004.png 이미지

Table 5. The Electrochemical series of elements

RSOCB3_2018_v27n6_38_t0005.png 이미지

Table 6. The purity of electrolytic Tin

RSOCB3_2018_v27n6_38_t0006.png 이미지

참고문헌

  1. Heloisa A Acciari, Antonio C Guastaldi, Christopher M. A Brett, 2004 : Corrosion of dental amalgams: electrochemical study of Ag-Hg, Ag-Sn and Sn-Hg phases, Electrochimica Acta, 46(24), pp.3887-3893. https://doi.org/10.1016/S0013-4686(01)00676-4
  2. Chao-yong Zhao, Fu-sheng Pan, and Hu-cheng Pan, 2016 : The effect of multiple precipitate types and texture on yield asymmetry in Mg-Sn-Zn(-Al-Na-Ca) alloys, Acta Materialia, 158, pp.1-12.
  3. L. C. Tsao, 2015 : Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications, Materials Science and Engineering: C, 46, pp.246-252. https://doi.org/10.1016/j.msec.2014.10.037
  4. V. P. Krasin, and S. I. Soyustova, 2018 : Quantitative evaluation of thermodynamic parameters of Li-Sn alloys related to their use in fusion reactor, Journal of Nuclear Materials, 505, pp.193-199. https://doi.org/10.1016/j.jnucmat.2018.04.008
  5. S. K. Jha, 2016 : Microstructural and textural evolution during hot deformation of dilute Zr-Sn alloy, Journal of Nuclear Materials, 482, pp.12-18. https://doi.org/10.1016/j.jnucmat.2016.09.028
  6. J. P. S. Loureiro, et al., 2017 : Deuterium retention in tin (Sn) and lithium-tin (Li-Sn) samples exposed to ISTTOK plasmas, Nuclear Materials and Energy, 12, pp.709-713. https://doi.org/10.1016/j.nme.2016.12.026
  7. H. W. Ha, 2017 : Design of Reduction Process of $SnO_2$ by $CH_4$ for Efficient Sn Recovery, Scientific Reports, 7, p.14427. https://doi.org/10.1038/s41598-017-14826-7
  8. D. C. Upham, V. Agarwal, A. Khechfe, Z. R Snodgrass, and E.W. McFarland, 2017 : Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon, Science, 358, pp.917-921. https://doi.org/10.1126/science.aao5023
  9. K. W. Lee, 2015 : Produce of High Purity Tin from Spent Solder by Electro Refining, J. of Korean Inst. of Resources Recycling, 24(2), pp.62-68. https://doi.org/10.7844/kirr.2015.24.2.62
  10. C. Y. Zhao, F. S. Pan, and H. C. Pan, 2016 : Microstructure, mechanical and bio-corrosion properties of as-extruded Mg-Sn-Ca alloys, Trans.Nonferrous Met.Soc. 26, pp.1574-1582. https://doi.org/10.1016/S1003-6326(16)64232-2