References
- Ansari, R., Mohammadi, V., Shojaei, M. F., Gholami, R. and Rouhi, H. (2014), "Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory", Eur. J. Mech.-A/Sol., 45, 143-152. https://doi.org/10.1016/j.euromechsol.2013.11.002
- Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R. and Sahmani, S. (2014), "Postbuckling analysis of Timoshenko nanobeams including surface stress effect", J. Eng. Sci., 75, 1-10. https://doi.org/10.1016/j.ijengsci.2013.10.002
- Ansari, R., Oskouie, M.F. and Gholami, R. (2016), "Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 75, 266-271. https://doi.org/10.1016/j.physe.2015.09.022
- Attia, M.A. and Mahmoud, F.F. (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", J. Mech. Sci., 105, 126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermos-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016d), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
- Ebrahimi, F. and Barati, M.R. (2016f), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2016h), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Just Accepted.
- Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
- Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316. https://doi.org/10.1007/s00339-015-9512-6
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016a), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Modell., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
- Gleiter, H. (2000), "Nanostructured materials: basic concepts and microstructure", Acta Mater., 48(1), 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2
- Guo, J.G. and Zhao, Y.P. (2007), "The size-dependent bending elastic properties of nanobeams with surface effects", Nanotechnol., 18(29), 295701. https://doi.org/10.1088/0957-4484/18/29/295701
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Analy., 57(4), 291-323. https://doi.org/10.1007/BF00261375
- Huang, Y., Hu, K.X., Wei, X. and Chandra, A. (1994), "A generalized self-consistent mechanics method for composite materials with multiphase inclusions", J. Mech. Phys. Sol., 42(3), 491-504. https://doi.org/10.1016/0022-5096(94)90028-0
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Kim, H.S. and Bush, M.B. (1999), "The effects of grain size and porosity on the elastic modulus of nanocrystalline materials", Nanostruct. Mater., 11(3), 361-367. https://doi.org/10.1016/S0965-9773(99)00052-5
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Murmu, T. and Adhikari, S. (2012), "Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems", Eur. J. Mech.-A/Sol., 34, 52-62. https://doi.org/10.1016/j.euromechsol.2011.11.010
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sahmani, S., Bahrami, M. and Ansari, R. (2014), "Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams", Compos. Struct., 116, 552-561. https://doi.org/10.1016/j.compstruct.2014.05.035
- Shaat, M. (2015), "Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams", J. Mech. Sci., 94, 27-35.
- Shaat, M. and Abdelkefi, A. (2015), "Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications", J. Mech. Sci., 101, 280-291.
- Shaat, M. and Abdelkefi, A. (2015), "Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force", J. Eng. Sci., 90, 58-75. https://doi.org/10.1016/j.ijengsci.2015.02.002
- Shaat, M. and Abdelkefi, A. (2016), "Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs", Microsyst. Technol., 22(2), 305-318. https://doi.org/10.1007/s00542-015-2421-y
- Shaat, M., Khorshidi, M.A., Abdelkefi, A. and Shariati, M. (2016), "Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials", J. Mech. Sci., 115, 574-585.
- Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
- Tounsi, A., Semmah, A. and Bousahla, A.A. (2013), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
- Wang, G.F. and Feng, X.Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Phys. D: Appl. Phys., 42(15), 155411. https://doi.org/10.1088/0022-3727/42/15/155411
- Wang, G.F., Feng, X.Q., Yu, S.W. and Nan, C.W. (2003), "Interface effects on effective elastic moduli of nanocrystalline materials", Mater. Sci. Eng.: A, 363(1), 1-8. https://doi.org/10.1016/S0921-5093(03)00253-3
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", J. Sol. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H., Aljinaidi, A.A. and Aifantis, E.C. (2015), "State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation", J. Mech. Sci. Technol., 29(7), 2921-2931. https://doi.org/10.1007/s12206-015-0623-y
Cited by
- Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides vol.73, pp.6, 2020, https://doi.org/10.12989/sem.2020.73.6.685