DOI QR코드

DOI QR Code

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina (Department of Civil Engineering, Material and Hydrology Laboratory, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Department of Civil Engineering, Material and Hydrology Laboratory, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Mahmoud, S.R. (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Alwabli, Afaf S. (Department of Biology, Faculty of Science, King Abdulaziz University)
  • 투고 : 2017.04.16
  • 심사 : 2017.12.23
  • 발행 : 2018.02.25

초록

In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

키워드

참고문헌

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  4. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  5. Ait Atmane, H., Tounsi, A. and Adda Bedia, E.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  6. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  7. Akavci, S. (2010), "Two new hyperbolic shear displacement models for orthotropic laminated composite plates", Mech. Compos. Mater., 46(2), 215-226. https://doi.org/10.1007/s11029-010-9140-3
  8. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  9. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  10. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  11. Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35, 677-694. https://doi.org/10.1080/01495739.2012.688665
  12. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  13. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  14. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  15. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  16. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  17. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  18. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  19. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  20. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/EAS.2017.13.3.255
  21. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  22. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., In Press.
  23. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  24. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  25. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  26. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  27. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  28. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  29. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  30. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  31. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  32. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  33. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  34. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  35. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  36. Cheng, Z.Q. and Batra, B.C. (2000), "Exact correspondence between eigenvalues of membranes and function ally graded simply supported polygonal plate", J. Sound Vibr., 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525
  37. Cheng, Z.Q. and Kitipornchai, S. (1999), "Membrane analogy of buckling and vibration of inhomogeneous plates", J. Eng. Mech., 125(11), 1293-1297. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1293)
  38. Chi, S. and Chung, Y. (2006a), "Mechanical behavior of functionally graded material plates under transverse load. Part I: Analysis", J. Sol. Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  39. Chi, S. and Chung, Y. (2006b), "Mechanical behavior of functionally graded material plates under transverse load. Part II: Numerical results", J. Sol. Struct., 43, 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
  40. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  41. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  42. Eisenberger, M. and Clastornik, J. (1987), "Vibrations and buckling of a beam on a variable Winkler elastic foundation", J. Sound Vibr., 115, 233-241. https://doi.org/10.1016/0022-460X(87)90469-X
  43. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  44. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccan., 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  45. Filipich, C.P. and Rosales, M.B. (2002), "A further study about the behavior of foundation piles and beams in a Winkler-Pasternak soil", J. Mech. Sci., 44(1), 21-36. https://doi.org/10.1016/S0020-7403(01)00087-X
  46. Filonenko-Borodich, M.M. (1940), "Some approximate theories of die elastic foundation", Uch. ZapiskiMosk. Gos. Univ. Mekhanika, 46, 3-18.
  47. Filonenko-Borodich, M.M. (1940) "Some approximate theories of die elastic foundation", Uch. ZapiskiMosk. Gos. Univ. Mekhanika, 46, 3-18.
  48. GhorbanpourArani, A., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., 60(3), 489-505. https://doi.org/10.12989/sem.2016.60.3.489
  49. Gorbunov-Posadov, M.I. (1949), Beams and Plates on Elastic Foundation, Gosstroiizdat.
  50. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  51. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  52. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and AddaBedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  53. Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J. Appl. Phys., 21, 55-58. https://doi.org/10.1063/1.1699420
  54. Hetenyi, M. (1946), Beams on Elastic Foundations, The Univ. Michigan Press, Ann Arbor, Michigan, U.S.A.
  55. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  56. Huang, Z.Y., Lu, C.F. and Chen, W.Q. (2008) "Bench mark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85, 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010
  57. Huang, Z.Y., Lu, C.F. and Chen, W.Q. (2008), "Bench mark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85, 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010
  58. Kar, V.R. and Panda, S.K. (2014), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/SEM.2015.53.4.661
  59. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", J. Sol. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  60. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", ASME J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667
  61. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  62. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  63. Kim, Y. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vibr., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043
  64. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  65. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
  66. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  67. Kolahchi, R. and MoniriBidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  68. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  69. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  70. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  71. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  72. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  73. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  74. Mantari, J.L., Oktem, A.S. and GuedesSoares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", J. Sol. Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  75. Matsunaga, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech., 126(1), 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27)
  76. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  77. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
  78. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  79. Omurtag, M.H., Ozutok, A. and Akoz, A.Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential", J. Numer. Meth. Eng., 40(2), 295-317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
  80. Pasternak, P.L. (1954), On a new Method of Analysis of an Elastic Foundation by Means of Two Foundation Constant, Gosstroiizdat, Moscow, Russia.
  81. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vibr., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
  82. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vibr., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
  83. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vibr., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
  84. Reddy, J.N. and Chin, C.D. (1998), "Thermoelastical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165
  85. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  86. Reddy, J.N. (2000), "Analysis of functionally graded plates", J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  87. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, CRC Press.
  88. Reddy, J.N. and Cheng, Z.Q. (2002), "Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal plan form", J. Mech. Sci., 44(5), 967-985. https://doi.org/10.1016/S0020-7403(02)00023-1
  89. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-72.
  90. Ren, J.G. (1986), "A new theory of laminated plate", Compos. Sci. Technol., 26(3), 225-239. https://doi.org/10.1016/0266-3538(86)90087-4
  91. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  92. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., 25(4), 389-401. https://doi.org/10.12989/SCS.2017.25.4.389
  93. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/SEM.2017.64.6.737
  94. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  95. Shen, H.S. (1995), "Postbuckling analysis of composite laminated plates on two parameter elastic foundations", J. Mech. Sci., 37(12), 1307-1316. https://doi.org/10.1016/0020-7403(95)00040-5
  96. Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829
  97. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650
  98. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Sol., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  99. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904
  100. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  101. Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  102. Vlasov, V.Z. (1949), Structural Mechanics of Thin Walled Three-Dimensional Systems, Stroiizdat.
  103. Xiang, S., Wang, K.M., Ai, Y.T., Sha, Y.D. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", Compos. Struct., 91(1), 31-37. https://doi.org/10.1016/j.compstruct.2009.04.029
  104. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccan., 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  105. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1).
  106. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A., Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Accepted.
  107. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  108. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  109. Zhemochkin, B.N. and Sinitsyn, A.P. (1947), Practical Methods of Calculation of Foundation Beams and Slabs on Elastic Foundation, Stroiizdat, Moscow, Russia.
  110. Zhemochkin, B.N. and Sinitsyn, A.P. (1947), Practical Methods of Calculation of Foundation Beams and Slabs on Elastic Foundation, Stroiizdat, Moscow, Russia.
  111. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations", J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915
  112. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations", J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915
  113. Zhou, D. (1993), "A general solution to vibrations of beams on variable Winkler elastic foundation", Comput. Struct., 47(1), 83-90. https://doi.org/10.1016/0045-7949(93)90281-H
  114. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153.
  115. Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four-variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Nonlocal Thermal and Mechanical Buckling of Nonlinear Orthotropic Viscoelastic Nanoplates Embedded in a Visco-Pasternak Medium vol.10, pp.8, 2018, https://doi.org/10.1142/s1758825118500862
  2. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2018, https://doi.org/10.12989/sem.2019.70.4.407
  3. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
  4. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
  5. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  6. Vibration analysis of functionally graded circular plates of variable thickness under thermal environment by generalized differential quadrature method vol.26, pp.1, 2020, https://doi.org/10.1177/1077546319876389
  7. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
  8. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2018, https://doi.org/10.12989/sem.2020.76.3.413
  9. A New Sinusoidal Shear Deformation Theory for Static Bending Analysis of Functionally Graded Plates Resting on Winkler-Pasternak Foundations vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6645211
  10. Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2018, https://doi.org/10.12989/gae.2021.24.1.091