Acknowledgement
Supported by : University of Zabol
References
- Du, X., (2010), "System reliability analysis with Saddlepoint approximation", Struct. Multidiscip. Optim., 42(2), 193-208. https://doi.org/10.1007/s00158-009-0478-x
- Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidisc. Optim., 43, 519-527. https://doi.org/10.1007/s00158-010-0582-y
- Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", ASCE J. Eng. Mech. Div., 100(1), 111-121.
- Keshtegar, B. and Bagheri, M. (2017), "Fuzzy relaxed-finite step size method to enhance the instability of the fuzzy first order reliability method using conjugate discrete map", Nonlin. Dyn.
- Keshtegar, B. and Chakraborty, S. (2018), "A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis", Appl. Math. Modell., 53(1), 319-332. https://doi.org/10.1016/j.apm.2017.09.017
- Keshtegar, B. and Meng, Z. (2017), "A hybrid relaxed first-order reliability method for efficient structural reliability analysis", Struct. Safety, 66(1), 84-93. https://doi.org/10.1016/j.strusafe.2017.02.005
- Keshtegar, B. (2016a), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 310(1), 866-885. https://doi.org/10.1016/j.cma.2016.07.046
- Keshtegar, B. (2016b), "Stability iterative method for structural reliability analysis using a chaotic conjugate map", Nonlin. Dyn., 84(4), 2161-2174. https://doi.org/10.1007/s11071-016-2636-1
- Keshtegar, B. (2017a), "A hybrid conjugate finite-step length method for robust and efficient reliability analysis", Appl. Math. Modell., 45(1), 226-237. https://doi.org/10.1016/j.apm.2016.12.027
- Keshtegar, B. (2017b), "Enriched FR conjugate search directions for robust and efficient structural reliability analysis", Eng. Comput., 1-16.
- Keshtegar, B. (2017c), "Limited conjugate gradient method for structural reliability analysis", Eng. Comput., 33(3), 621-709. https://doi.org/10.1007/s00366-016-0493-7
- Keshtegar, B. and Kisi, O. (2017), "M5 model tree and Monte Carlo simulation for efficient structural reliability analysis", Appl. Math. Modell., 48(1), 899-910 https://doi.org/10.1016/j.apm.2017.02.047
- Keshtegar, B. and Miri, M. (2014), "Introducing conjugate gradient optimization for modified HL-RF method", Eng. Comput., 31(4), 775-790. https://doi.org/10.1108/EC-09-2012-0225
- Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)
- Koduru, S.D. and Haukaas, T. (2010), "Feasibility of FORM in finite element reliability analysis", Struct. Safety, 32(1), 145-153. https://doi.org/10.1016/j.strusafe.2009.10.001
- Liu, D. and Peng, Y. (2012), "Reliability analysis by mean-value second-order expansion", J. Mech. Des., 134(6), 1-8
- Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Safety, 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7
- Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first order reliability analysis", Struct. Multidiscipl. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z
- Pericaro, G.A., Santos, S.R., Ribeiro, A.A. and Matioli, L.C. (2015), "HLRF-BFGS optimization algorithm for structural reliability", Appl. Math. Modell., 39(7), 2025-2035. https://doi.org/10.1016/j.apm.2014.10.024
- Rackwitz, R. and Fiessler, B. (1978), "Structural reliability under combined load sequences", Comput. Struct., 9(8), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
- Rao, B.N. and Chowdhury, R. (2009), "Enhanced high-dimensional model representation for reliability analysis", J. Numer. Meth. Eng., 77(5), 719-750. https://doi.org/10.1002/nme.2440
- Santos, S.R., Matioli, L.C. and Beck, A.T. (2012), "New optimization algorithms for structural reliability analysis", Comput. Model. Eng. Sci., 83(1), 23-56.
- Santosh, T.V., Saraf, R.K., Ghosh, A.K. and Kushwaha, H.S. (2006), "Optimum step length selection rule in modified HL-RF method for structural reliability", J. Press Vess. Pip., 83, 742-748. https://doi.org/10.1016/j.ijpvp.2006.07.004
- Wang, L.P. and Grandhi, R.V. (1994), "Efficient safety index calculation for structural reliability analysis", Comput. Struct., 52(1), 103-111. https://doi.org/10.1016/0045-7949(94)90260-7
- Wang, L.P. and Grandhi, R.V. (1996), "Safety index calculation using intervening variables for structural reliability analysis", Comput. Struct., 59(6), 1139-1148. https://doi.org/10.1016/0045-7949(96)00291-X
- Xiao, N.C., Huang, H.Z., Wang, Z., Pang, Y. and He, L. (2011), "Reliability sensitivity analysis for structural systems in interval probability form", Struct. Multidiscipl. Optim., 44, 691-705. https://doi.org/10.1007/s00158-011-0652-9
- Yang, D. (2010), "Chaos control for numerical instability of first order reliability method", Commun. Nonlin. Sci. Numer. Simulat., 5, 3131-3141.
Cited by
- Limited descent-based mean value method for inverse reliability analysis pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0661-z
- Refined first-order reliability method using cross-entropy optimization method vol.35, pp.4, 2018, https://doi.org/10.1007/s00366-018-0680-9
- Non-gradient probabilistic Gaussian global-best harmony search optimization for first-order reliability method vol.36, pp.4, 2020, https://doi.org/10.1007/s00366-019-00756-7