DOI QR코드

DOI QR Code

Nonlinear vibration of oscillatory systems using semi-analytical approach

  • Bayat, Mahmoud (Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Department of Civil Engineering, Roudehen Branch, Islamic Azad University) ;
  • Pakar, Iman (Mashhad Branch, Islamic Azad University)
  • Received : 2016.11.30
  • Accepted : 2017.11.28
  • Published : 2018.02.25

Abstract

In this paper, He's Variational Approach (VA) is used to solve high nonlinear vibration equations. The proposed approach leads us to high accurate solution compared with other numerical methods. It has been established that this method works very well for whole range of initial amplitudes. The method is sufficient for both linear and nonlinear engineering problems. The accuracy of this method is shown graphically and the results tabulated and results compared with numerical solutions.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  2. Baki, O. and Safa, B.C. (2011), "The homotopy perturbation method for free vibration analysis of beam on elastic foundation'', Struct. Eng. Mech., 37(4) 415-425. https://doi.org/10.12989/sem.2011.37.4.415
  3. Bayat, M., Bayat, M. and Pakar, I. (2015a), "Analytical study of nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
  4. Bayat, M. and Pakar, I. (2015b), "Mathematical solution for nonlinear vibration equations using variational approach", Smart Struct. Syst., 15(5), 1311-1327. https://doi.org/10.12989/sss.2015.15.5.1311
  5. Bayat, M. and Pakar, I. (2017), "Accurate semi-analytical solutionfor nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
  6. Bayat, M., Bayat, M. and Pakar, I. (2015c), "Analytical study of nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
  7. Bayat, M., Pakar, I. and Domaiirry, G. (2012), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Lat. Am. J. Sol. Struct., 9(2), 145-234.
  8. Bayat, M., Pakar, I. and Bayat, M. (2016), "Nonlinear vibration of conservative oscillator's using analytical approaches", Struct. Eng. Mech., 59(4), 671-682. https://doi.org/10.12989/sem.2016.59.4.671
  9. Chen, G. (1987), "Applications of a generalized Galerkin's method to non-linear oscillations of two-degree-of-freedom systems", J. Sound Vibr., 119, 225-242. https://doi.org/10.1016/0022-460X(87)90451-2
  10. Filobello-Nino, U.H., Vazquez-Leal, B., Benhammouda, A., Perez-Sesma, V., Jimenez-Fernandez, J., Cervantes-Perez, A., Sarmiento-Reyes, J., Huerta-Chua, L., Morales-Mendoza, M. and Gonzalez-Lee (2015), "Analytical solutions for systems of singular partial differential-algebraic equations", Discr. Dyn. Nat. Soc., Article ID 752523, 9.
  11. Hashemi Kachapi, S.M. and Ganji, D.D. (2013), Dynamics and Vibrations: Progress in Nonlinear Analysis, Springer.
  12. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A., 374, 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  13. He, J.H. (1999), "Variational iteration method: A kind of nonlinear analytical technique: some examples", J. Non-Lin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  14. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solit. Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  15. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29, 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  16. Kaya, M.O. and Demirbag, S.A. (2013), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos Solit. Fract., 42(4), 1967-1977. https://doi.org/10.1016/j.chaos.2009.03.143
  17. Lau, S.L., Cheung, Y.K. and Wu, S.Y. (1983), "Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems", J. Appl. Mech., 50(4), 871-876. https://doi.org/10.1115/1.3167160
  18. Mehdipou, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  19. Ozis, T. and Yildirim, A. (2017), "A note on He's homotopy perturbation method for van der pol oscillator with very strong nonlinearity", Chaos Solit. Fract., 34(3), 989-991. https://doi.org/10.1016/j.chaos.2006.04.013
  20. Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of stringer shell: An analytical approach", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 229(1), 44-51. https://doi.org/10.1177/0954408913509090
  21. Radomirovic, D. and Kovacic, I. (2015), "An equivalent spring for nonlinear springs in series", Eur. J. Phys., 36(5), 055004. https://doi.org/10.1088/0143-0807/36/5/055004
  22. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  23. Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Modell., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  24. Zhifeng, L., Yunyao, Y., Feng, W., Yongsheng, Z. and Ligang, C. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697

Cited by

  1. Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect vol.24, pp.6, 2018, https://doi.org/10.12989/gae.2021.24.6.589