References
- Abramovich, H. and Hamburger, O. (1991), "Vibration of a cantilever Timoshenko beam with a tip mass", J. Sound Vibr., 148(1), 162-170. https://doi.org/10.1016/0022-460X(91)90828-8
- Arikoglu, A. and Ozkol, I. (2006), "Solution of difference equations by using differential transform method", Appl. Math. Comput., 174, 1216-1228.
- Auciello, N.M. (1996), "Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotatory inertia and eccentricity", J. Sound Vibr., 194(1), 25-34. https://doi.org/10.1006/jsvi.1996.0341
- Balkaya, M., Kaya, M.O. and Saglamer, A. (2009), "Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method", Arch. Appl. Mech., 79, 135-146. https://doi.org/10.1007/s00419-008-0214-9
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Modell., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- Chen, C.K. and Ho, S.H. (1998), "Analysis of general elastically end restrained non-uniform beams using differential transform", Appl. Math. Modell., 22, 219-234. https://doi.org/10.1016/S0307-904X(98)10002-1
- Ebrahimi, F. and Mokhdari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Braz. Soc. Mech. Sci. Eng., 37, 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
- Esmailzadeh, E. and Nakhaie-Jazar, G. (1998), "Periodic behavior of a cantilever beam with end mass subjected to harmonic base excitation", J. Non-Lin. Mech., 33(4), 567-577. https://doi.org/10.1016/S0020-7462(97)00038-3
- Gokdag, H. and Kopmaz, O. (2005), "Coupled bending and torsional vibration of a beam with inspan and tip attachments", J. Sound Vibr., 287, 591-610. https://doi.org/10.1016/j.jsv.2004.11.019
- He, J. and Fu, Z.F. (2001), Modal Analysis, Butterworth-Heinemann, Oxford.
- Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform", J. Mech. Sci., 48, 1323-1331. https://doi.org/10.1016/j.ijmecsci.2006.05.002
- Hwang, I., Li, J. and Du, D. (2009), "Differential transformation and its application to nonlinear optimal control", J. Dyn. Syst. Measure. Contr., 131, 051010-1-051010-11. https://doi.org/10.1115/1.3155013
- Joshi, A. (1995), "Constant Frequency solutions of a uniform cantilever beam with variable tip mass and corrector spring", J. Sound Vibr., 179(1), 165-169. https://doi.org/10.1006/jsvi.1995.0010
- Kaya, M.O. and Ozdemir Ozgumus, O. (2007), "Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM", J. Sound Vibr., 306, 495-506. https://doi.org/10.1016/j.jsv.2007.05.049
- Kirk, C.L. and Wiedemann, S.M. (2002), "Natural frequencies and mode shapes of a free-free beam with large end masses", J. Sound Vibr., 254(5), 939-949. https://doi.org/10.1006/jsvi.2001.4138
- Liu, B., Zhou, X. and Du, Q. (2015), "Differential transform method for some delay differential equations", Appl. Math., 6, 585-593. https://doi.org/10.4236/am.2015.63053
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013) "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Matt, C.F. (2013), "Simulation of the transverse vibrations of a cantilever beam with an eccentric tip mass in the axial direction using integral transforms", Appl. Math. Modell., 37, 9338-9354. https://doi.org/10.1016/j.apm.2013.04.038
- Oguamanam, D.C.D. (2003), "Free vibration of beams with finite mass rigid tip load and flexural-torsional coupling", J. Mech. Sci., 45, 963-979. https://doi.org/10.1016/j.ijmecsci.2003.09.014
- Oguamanam, D.C.D. and Arshad, M. (2005), "On the natural frequencies of a flexible manipulator with a tip load", Proceedings of the Institution of Mechanical Engineers, 219, 1199-1205.
- Pukhov, G.E. (1981), "Expansion formulas for differential transforms", Cybern. Syst. Analy., 17, 460.
- Pukhov, G.E. (1982), "Differential transforms and circuit theory", J. Circ. Theor. App., 10, 265. https://doi.org/10.1002/cta.4490100307
- Rajasekaran, S. and Tochaei, E.N. (2014), "Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest order", Meccan., 49, 995-1009. https://doi.org/10.1007/s11012-013-9847-z
- Salarieh, H. and Ghorashi, M. (2006), "Free vibration of Timoshenko beam with finite mass rigid tip load and flexural torsional coupling", J. Mech. Sci., 48, 763-779. https://doi.org/10.1016/j.ijmecsci.2006.01.008
- Salehi, P., Yagoobi, H. and Torabi, M. (2012), "Application of the differential transformation method and variation iteration method to large deformation of cantilever beams under point load", J. Mech. Sci. Technol., 26(9), 2879-2887. https://doi.org/10.1007/s12206-012-0730-y
- Vakil, M., Sharbati, E., Vakil, A., Heidari, F. and Fotouhi, R. (2013), "Vibration analysis of a Timoshenko beam on a moving base", J. Vibr. Contr., 21(6), 1068-1085. https://doi.org/10.1177/1077546313492808
- Yesilce, Y. (2010), "Differential transform method for free vibration analysis of a moving beam", Struct. Eng. Mech., 35(5), 645-658. https://doi.org/10.12989/sem.2010.35.5.645
- Zhou, J.K. (1986), Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China.
Cited by
- Damage detection using both energy and displacement damage index on the ASCE benchmark problem vol.77, pp.2, 2018, https://doi.org/10.12989/sem.2021.77.2.151