DOI QR코드

DOI QR Code

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague) ;
  • Zeman, Jan (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague) ;
  • Janda, Tomas (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague) ;
  • Sejnoha, Michal (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
  • 투고 : 2017.02.15
  • 심사 : 2017.12.22
  • 발행 : 2018.02.25

초록

In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

키워드

과제정보

연구 과제 주관 기관 : Czech Science Foundation

참고문헌

  1. Andreozzi, L., Briccoli Bati, S., Fagone, M., Ranocchiai, G. and Zulli, F. (2014), "Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass", Constr. Build. Mater., 65, 1-13. https://doi.org/10.1016/j.conbuildmat.2014.04.003
  2. Belytschko, T., Tsay, C.S. and Liu, W.K. (1981), "A stabilization procedure for the quadrilateral plate element with one-point quadrature", J. Numer. Meth. Eng., 19(3), 405-419.
  3. Bonnans, J.F., Gilbert, J.C., Lemarechal, C. and Sagastizabal, C.A. (2006), Numerical Optimization: Theoretical and Practical Aspects, Springer Science & Business Media, Berlin, Germany.
  4. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
  5. Carrera, E. (2004), "On the use of the Murakami's zig-zag function in the modeling of layered plates and shells", Comput. Struct., 82(7-8), 541-554. https://doi.org/10.1016/j.compstruc.2004.02.006
  6. Christensen, R. (1982), Theory of Viscoelasticity: An Introduction, Academic Press, New York, U.S.A.
  7. Duser, A., Jagota, A. and Bennison, S. (1999), "Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure", J. Eng. Mech., 125(4), 435-442. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(435)
  8. Eisentrager, J., Naumenko, K., Altenbach, H., and Koppe, H. (2015a), "Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels", J. Mech. Sci., 96-97, 163-171. https://doi.org/10.1016/j.ijmecsci.2015.03.012
  9. Eisentrager, J., Naumenko, K., Altenbach, H. and Meenen, J. (2015b), "A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory", Compos. Struct., 133, 265-277. https://doi.org/10.1016/j.compstruct.2015.07.049
  10. Flocker, F.W. and Dharani, L.R. (1998), "Modeling interply debonding in laminated architectural glass subject to low velocity impact", Struct. Eng. Mech., 6(5), 485-496. https://doi.org/10.12989/sem.1998.6.5.485
  11. Galuppi, L. and Royer-Carfagni, G. (2012), "The effective thickness of laminated glass plates", J. Mech. Mater. Struct., 7, 375-400. https://doi.org/10.2140/jomms.2012.7.375
  12. Galuppi, L. and Royer-Carfagni, G. (2013a), "The effective thickness of laminated glass: Inconsistency of the formulation in a proposal of EN-standards", Compos. Part B Eng., 55, 109-118. https://doi.org/10.1016/j.compositesb.2013.05.025
  13. Galuppi, L. and Royer-Carfagni, G. (2013b), "The design of laminated glass under time-dependent loading", J. Mech. Sci., 68, 67-75. https://doi.org/10.1016/j.ijmecsci.2012.12.019
  14. Huang, X., Liu, G., Liu, Q. and Bennison, S.J. (2014), "An experimental study on the flexural performance of laminated glass", Struct. Eng. Mech., 49(2), 261-271. https://doi.org/10.12989/sem.2014.49.2.261
  15. Krysl, P. (2015), Finite Element Modeling with Abaqus and Matlab for Thermal and Stress Analysis, Pressure Cooker Press, San Diego, California, U.S.A.
  16. Liang, Y., Lancaster, F. and Izzuddin, B.A. (2016), "Effective modelling of structural glass with laminated shell elements", Compos. Struct., 156, 47-62. https://doi.org/10.1016/j.compstruct.2016.02.077
  17. Mau, S.T. (1973), "A refined laminated plate theory", J. Appl. Mech., 40(2), 606-607. https://doi.org/10.1115/1.3423032
  18. Naumenko, K. and Eremeyev, V.A. (2014), "A layer-wise theory for laminated glass and photovoltaic panels", Compos. Struct., 112, 283-291. https://doi.org/10.1016/j.compstruct.2014.02.009
  19. Pica, A., Wood, R.D. and Hinton, E. (1980), "Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation", Comput. Struct., 11(3), 203-215. https://doi.org/10.1016/0045-7949(80)90160-1
  20. Reddy, J.N. and Robbins, J.D.H. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147-169. https://doi.org/10.1115/1.3111076
  21. Schmidt, J., Zemanova, A., Janda, T., Zeman, J. and Sejnoha, M. (2017), "Variationally-based effective dynamic thickness for laminated glass beams", Acta Polytech. CTU Proc. 13, Prague, September.
  22. Williams, M.L., Landel, R.F. and Ferry, J.D. (1955), "The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids", J. Am. Chem. Soc., 77(14), 3701-3707. https://doi.org/10.1021/ja01619a008
  23. Wu, P., Zhou, D., Liu, W., Lu, W. and Wan, L. (2016), "Three-dimensional elasticity solution of layered plates with viscoelastic interlayers", Mech. Time-Dep. Mater., 21(3), 307-329.
  24. Xenidis, H., Morfidis, K. and Papadopoulos, P.G. (2015), "A method for predicting approximate lateral deflections in thin glass plates", Struct. Eng. Mech., 53(1), 131-146. https://doi.org/10.12989/sem.2015.53.1.131
  25. Zemanova, A., Zeman, J., Sejnoha, M., Zemanova, A., Zeman, J. and Sejnoha, M. (2015), "Finite element model based on refined plate theories for laminated glass units", Lat. Am. J. Sol. Struct., 12(6), 1158-1181. https://doi.org/10.1590/1679-78251676
  26. Zemanova, A., Zeman, J. and Sejnoha, M. (2017), "Comparison of viscoelastic finite element models for laminated glass beams", J. Mech. Sci., 131-132, 380-395. https://doi.org/10.1016/j.ijmecsci.2017.05.035
  27. Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
  28. Zienkiewicz, O.C., Watson, M. and King, I.P. (1968), "A numerical method of visco-elastic stress analysis", J. Mech. Sci., 10(10), 807-827. https://doi.org/10.1016/0020-7403(68)90022-2
  29. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, the Netherlands.

피인용 문헌

  1. Experimental and Numerical Study of Viscoelastic Properties of Polymeric Interlayers Used for Laminated Glass: Determination of Material Parameters vol.12, pp.14, 2018, https://doi.org/10.3390/ma12142241