DOI QR코드

DOI QR Code

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehrabi, Mojtaba (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Hadizadeh, Hasan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Hadizadeh, Hossein (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2016.10.16
  • Accepted : 2017.11.19
  • Published : 2018.02.25

Abstract

In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Afshin, M. and Taheri, F. (2015), "Interlaminar stresses of laminated composite beams resting on elastic foundation subjected to transverse loading", Comput. Materials. Sci., 96, 439-447. https://doi.org/10.1016/j.commatsci.2014.06.027
  2. Aifantis, E.C. (1999), "Gradient deformation models at nano, micro and macro scales", J. Eng. Mater. Technol., 121(2), 189-202. https://doi.org/10.1115/1.2812366
  3. Akgoz, B. and Civalek, O. (2012), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82(3), 423-443. https://doi.org/10.1007/s00419-011-0565-5
  4. Akgoz, B. and Civalek, O. (2014a), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Eng. Sci., 81, 88-94.
  5. Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  6. Akgoz, B. and Civalek, O. (2015a), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta. Mech., 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4
  7. Akgoz, B. and Civalek, O. (2015b), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
  8. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient elasticity", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  9. Ansari, R. and Sahmani, S. (2011), "Surface stress effects on the free vibration behavior of nanoplates", Int. J. Eng. Sci., 49(11), 1204-1215. https://doi.org/10.1016/j.ijengsci.2011.06.005
  10. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  11. Attia, M.A. and Mahmoud, F.F. (2016), "Modelling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", Int. J. Mech. Sci., 105, 126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002
  12. Civalek, O., Demir, C. and Akgoz, B. (2009), "Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Engin. Appl. Sci., 1(2), 47-56.
  13. Ebrahimi, F. and Barati, M.R. (2016a), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta. Mech. Solid. Sinica, 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5
  14. Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  15. Dai, H.L., Zhao, D.M., Zou, J.J. and Wang, L. (2016), "Surface effect on the nonlinear forced vibration of cantilevered nanobeams", Phys. E., 80, 25-30. https://doi.org/10.1016/j.physe.2016.01.008
  16. Eringen, A.C. (1967), "Theory of micropolar plates", Z. Angew. Math. Phys., 18, 12-30. https://doi.org/10.1007/BF01593891
  17. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  18. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  19. Fleck, N.A. and Hutchinson, J.W. (2001), "A reformulation of strain gradient plasticity", J. Mech. Phys. Solids., 49(10), 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7
  20. Ghorbanpour Arani, A. and Roudbari, M.A. (2014), "Surface stress, initial stress and Knudsen-dependent flow velocity effects on electro-thermo nonlocal wave propagation of SWBNNTs", Phys. B., 452, 159-165. https://doi.org/10.1016/j.physb.2014.07.017
  21. Jahangiri, R., Jahangiri, H. and Khezerloo, H. (2015), "FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory", Steel Compos. Struct., Int. J., 18(6), 1541-1555. https://doi.org/10.12989/scs.2015.18.6.1541
  22. Khorshidi, M.A., Shaat, M., Abdelkefi, A. and Shariati, M. (2017), "Nonlocal modeling and buckling features of cracked nanobeams with Von Karmen nonlinearity", Appl. Phys. A, 123(1), 62-73.
  23. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity: I and II", Proc. K. Ned. Akad. Wet. (B), 67, 17-44.
  24. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508 https://doi.org/10.1016/S0022-5096(03)00053-X
  25. Lei, J., He, Y., Zhang, B., Gan, Zh. and Zeng, P. (2013a), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
  26. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
  27. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013c), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  28. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
  29. Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009
  30. Lu, C.F., Chen, W.Q. and Lim, C.W. (2009a), "Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies", Compos. Sci. Technol., 69(7-8), 1124-1130. https://doi.org/10.1016/j.compscitech.2009.02.005
  31. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009b), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  32. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  33. McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
  34. Mohammadi, H. and Mahzoon, M. (2013), "Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory", Compos. Struct., 106, 764-776. https://doi.org/10.1016/j.compstruct.2013.06.030
  35. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analysis of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054
  36. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2014), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using Eshelby-Mori-Tanaka approach", J. Solid. Mech., 7(2), 173-190.
  37. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomositr plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  38. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016a), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9
  39. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016b), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temprature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  40. Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996), "Micro-hardness of annealed and work-hardened copper polycrystals", Scr. Mater., 34(4), 559-564 https://doi.org/10.1016/1359-6462(95)00524-2
  41. Shaat, M. (2015b), "Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams", Int. J. Mech. Sci., 94-95, 27-35. https://doi.org/10.1016/j.ijmecsci.2015.02.008
  42. Shaat, M. and Abdelkefi, A. (2015a), "Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force", Int. J. Mech. Sci., 90, 58-75.
  43. Shaat, M. and Abdelkefi, A. (2017), "Material structure and size effects on the nonlinear dynamics of electrostatically-actuated nano-beams", Int. J. Nonlin. Mech., 89, 25-42. https://doi.org/10.1016/j.ijnonlinmec.2016.11.006
  44. Shaat, M., Mahmoud, F.F., Alshorbagi, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., Int. J., 44(4), 431-448. https://doi.org/10.12989/sem.2012.44.4.431
  45. Shaat, M., Eltaher, M.A., Gad, A.I. and Mahmoud, F.F. (2013), "Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies", Int. J. Mech. Sci., 77, 356-364. https://doi.org/10.1016/j.ijmecsci.2013.04.015
  46. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  47. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  48. Thai, H.T. and Vo, T.P. (2013a), "A new sinusoidal shear deformation theory for bending, buckling and vibration of functionally graded plates", App. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
  49. Thai, H.T. and Vo, T.P. (2013b), "A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory", Compos. Struct., 96, 376-383. https://doi.org/10.1016/j.compstruct.2012.09.025
  50. Yang, J. Xiong, J., Ma, L., Zhang, G., Wang, X. and Wu, L. (2014), "Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores", Compos. Struct., 117, 362-372. https://doi.org/10.1016/j.compstruct.2014.06.042
  51. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analysis of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010

Cited by

  1. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.533
  2. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2018, https://doi.org/10.12989/acd.2021.6.2.117
  3. Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature vol.27, pp.15, 2021, https://doi.org/10.1177/1077546320949083
  4. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2018, https://doi.org/10.12989/amr.2021.10.3.169
  5. Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2018, https://doi.org/10.12989/cac.2021.28.3.259