DOI QR코드

DOI QR Code

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Viswanathan, K.K. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Izyan, M.D. Nurul (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Aziz, Z.A. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Lee, J.H. (Department of Naval Architecture & Ocean Engineering, Inha University)
  • 투고 : 2017.08.11
  • 심사 : 2017.12.14
  • 발행 : 2018.02.25

초록

Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

키워드

과제정보

연구 과제 주관 기관 : Universiti Teknologi Malaysia

참고문헌

  1. Bai, E. and Chen, A. (2013), "A symplecticeigenfunction expansion approach for free vibration solutions of rectangular Kirchhoff plates", J. Vib. Control, 19(8), 1208-1215. https://doi.org/10.1177/1077546312448503
  2. Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA Journal, 31(7), 1299-1306. https://doi.org/10.2514/3.11767
  3. Ferreira, A., Roque, C. and Martins, P. (2003), "Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B: Eng., 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
  4. Groh, R. and Weaver, P. (2015), "Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells", Compos. Struct., 120, 231-245. https://doi.org/10.1016/j.compstruct.2014.10.006
  5. Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2015), "The (3, 2)-mixed refined zigzag theory for generally laminated beams: theoretical development and C0 finite element formulation", Int. J. Solids Struct., 73, 1-19.
  6. Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angle-ply plates with variable thickness", Compos. Struct., 137, 56-69. https://doi.org/10.1016/j.compstruct.2015.11.016
  7. Kant, T. and Swaminathan, K. (2001a), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
  8. Kant, T. and Swaminathan, K. (2001b), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232
  9. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
  10. Karttunen, A.T. and von Hertzen, R. (2015), "Exact theory for a linearly elastic interior beam", Int. J. Solids Struct., 78-79, 125-130.
  11. Khdeir, A. (2001), "Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical bending", J. Vib. Control, 7(6), 781-801. https://doi.org/10.1177/107754630100700602
  12. Lee, C.-Y. (2013), "Zeroth-order shear deformation micro-mechanical model for composite plates with in-plane heterogeneity", Int. J. Solids Struct., 50(19), 2872-2880. https://doi.org/10.1016/j.ijsolstr.2013.04.030
  13. Mackerle, J. (2002), "Finite element analyses of sandwich structures: a bibliography (1980-2001)", Eng. Comput., 19(2), 206-245. https://doi.org/10.1108/02644400210419067
  14. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B: Eng., 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009
  15. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  16. Mantari, J.L., Oktem, A. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  17. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  18. Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of rectangular and annular Mindlin plates with undamaged and damaged boundaries by the spectral collocation method", J. Vib. Control, 18(11), 1722-1736. https://doi.org/10.1177/1077546311422242
  19. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
  20. Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
  21. Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C.G. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
  22. Nguyen, T.N., Thai, C.H. and Xuan, H.N. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012
  23. Nguyen, T.N., Ngo, T.D. and Xuan, H.N. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024
  24. Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199. https://doi.org/10.1115/1.3101923
  25. Pai, P.F. (1995), "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solids Struct., 32(16), 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X
  26. Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solids Struct., 36(10), 1523-1540. https://doi.org/10.1016/S0020-7683(98)00050-X
  27. Pekovic, O., Stupar, S., Simonovic, A., Svorcan, J. and Komarov, D. (2014), "Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory", J. Mech. Sci. Technol., 28(8), 3153-3162. https://doi.org/10.1007/s12206-014-0724-z
  28. Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. (2015a), "A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates", Computat. Mater. Sci., 96, 549-558. https://doi.org/10.1016/j.commatsci.2014.04.043
  29. Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015b), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Computat. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
  30. Rajagopal, A. and Hodges, D.H. (2015), "Variational asymptotic analysis for plates of variable thickness", Int. J. Solids Struct., 75-76, 81-87. https://doi.org/10.1016/j.ijsolstr.2015.08.002
  31. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, (2nd Edition), CRC Press, Boca Raton, FL, USA.
  32. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
  33. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, A68-77.
  34. Saha, K., Misra, D., Pohit, G. and Ghosal, S. (2004), "Large amplitude free vibration study of square plates under different boundary conditions through a static analysis", J. Vib. Control, 10(7), 1009-1028. https://doi.org/10.1177/1077546304038101
  35. Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
  36. Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", Int. J. Mech. Sci., 131-132, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053
  37. Srinivas, S. and Rao, A.K. (1970), "Bending vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
  38. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. and Rabczuk, T. (2015), "Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mech. Adv. Mater. Struct., 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
  39. Tran, L.V., Nguyen-Thoi, T., Thai, C.H. and Nguyen-Xuan, H. (2013), "An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates", Mech. Adv. Mater. Struct., 22(4), 248-268. https://doi.org/10.1080/15376494.2012.736055
  40. Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 54(3), 201-214. https://doi.org/10.1115/1.3097295
  41. Viswanathan, K.K. and Javed, S. (2016), "Free vibration of anti-symmetric angle-ply cylindrical shell walls using first-order shear deformation theory", J. Vib. Control, 22(7), 1757-1768. DOI: 10.1177/1077546314544893
  42. Viswanathan, K.K. and Lee, S.K. (2007), "Free vibration of laminated cross-ply plates including shear deformation by spline method", Int. J. Mech. Sci., 49(3), 352-363. https://doi.org/10.1016/j.ijmecsci.2006.08.016
  43. Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. (2015a), "Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory", Meccanica, 50(12), 3013-3027. https://doi.org/10.1007/s11012-015-0175-3
  44. Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, I.A. (2015b), "Free vibration of anti-symmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495. https://doi.org/10.1016/j.compstruct.2014.11.075
  45. Viswanathan, K.K., Aziz, Z.A., Javed, S., Yaacob, Y. and Pullepu, B. (2015c), "Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method", J. Mech. Sci. Technol., 29(5), 2073-2080. https://doi.org/10.1007/s12206-015-0428-z
  46. Yang, P.C., Nooris, C.H. and Stavsky, Y. (1966), "Elastic wave propogation in heterogeneous plates", Int. J. Solids Struct., 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
  47. Yang, H.T., Saigal, S., Masud, A. and Kapania, R. (2000), "A survey of recent shell finite elements", Int. J. Numer. Methods Eng., 47(1-3), 101-127. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
  48. Zhen, W. and Wanji, C. (2006), "Free vibration of laminated composite and sandwich plates using global-local higher-order theory", J. Sound Vib., 298(1), 333-349. https://doi.org/10.1016/j.jsv.2006.05.022

피인용 문헌

  1. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
  2. Free Vibration of Annular Circular Plates Based on Higher-Order Shear Deformation Theory: A Spline Approximation Technique vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5440376