과제정보
연구 과제 주관 기관 : Universiti Teknologi Malaysia
참고문헌
- Bai, E. and Chen, A. (2013), "A symplecticeigenfunction expansion approach for free vibration solutions of rectangular Kirchhoff plates", J. Vib. Control, 19(8), 1208-1215. https://doi.org/10.1177/1077546312448503
- Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA Journal, 31(7), 1299-1306. https://doi.org/10.2514/3.11767
- Ferreira, A., Roque, C. and Martins, P. (2003), "Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B: Eng., 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
- Groh, R. and Weaver, P. (2015), "Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells", Compos. Struct., 120, 231-245. https://doi.org/10.1016/j.compstruct.2014.10.006
- Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2015), "The (3, 2)-mixed refined zigzag theory for generally laminated beams: theoretical development and C0 finite element formulation", Int. J. Solids Struct., 73, 1-19.
- Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angle-ply plates with variable thickness", Compos. Struct., 137, 56-69. https://doi.org/10.1016/j.compstruct.2015.11.016
- Kant, T. and Swaminathan, K. (2001a), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Kant, T. and Swaminathan, K. (2001b), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232
- Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
- Karttunen, A.T. and von Hertzen, R. (2015), "Exact theory for a linearly elastic interior beam", Int. J. Solids Struct., 78-79, 125-130.
- Khdeir, A. (2001), "Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical bending", J. Vib. Control, 7(6), 781-801. https://doi.org/10.1177/107754630100700602
- Lee, C.-Y. (2013), "Zeroth-order shear deformation micro-mechanical model for composite plates with in-plane heterogeneity", Int. J. Solids Struct., 50(19), 2872-2880. https://doi.org/10.1016/j.ijsolstr.2013.04.030
- Mackerle, J. (2002), "Finite element analyses of sandwich structures: a bibliography (1980-2001)", Eng. Comput., 19(2), 206-245. https://doi.org/10.1108/02644400210419067
- Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B: Eng., 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
- Mantari, J.L., Oktem, A. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of rectangular and annular Mindlin plates with undamaged and damaged boundaries by the spectral collocation method", J. Vib. Control, 18(11), 1722-1736. https://doi.org/10.1177/1077546311422242
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
- Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
- Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C.G. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
- Nguyen, T.N., Thai, C.H. and Xuan, H.N. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012
- Nguyen, T.N., Ngo, T.D. and Xuan, H.N. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024
- Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199. https://doi.org/10.1115/1.3101923
- Pai, P.F. (1995), "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solids Struct., 32(16), 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X
- Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solids Struct., 36(10), 1523-1540. https://doi.org/10.1016/S0020-7683(98)00050-X
- Pekovic, O., Stupar, S., Simonovic, A., Svorcan, J. and Komarov, D. (2014), "Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory", J. Mech. Sci. Technol., 28(8), 3153-3162. https://doi.org/10.1007/s12206-014-0724-z
- Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. (2015a), "A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates", Computat. Mater. Sci., 96, 549-558. https://doi.org/10.1016/j.commatsci.2014.04.043
- Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015b), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Computat. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
- Rajagopal, A. and Hodges, D.H. (2015), "Variational asymptotic analysis for plates of variable thickness", Int. J. Solids Struct., 75-76, 81-87. https://doi.org/10.1016/j.ijsolstr.2015.08.002
- Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, (2nd Edition), CRC Press, Boca Raton, FL, USA.
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, A68-77.
- Saha, K., Misra, D., Pohit, G. and Ghosal, S. (2004), "Large amplitude free vibration study of square plates under different boundary conditions through a static analysis", J. Vib. Control, 10(7), 1009-1028. https://doi.org/10.1177/1077546304038101
- Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
- Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", Int. J. Mech. Sci., 131-132, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053
- Srinivas, S. and Rao, A.K. (1970), "Bending vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
- Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. and Rabczuk, T. (2015), "Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mech. Adv. Mater. Struct., 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
- Tran, L.V., Nguyen-Thoi, T., Thai, C.H. and Nguyen-Xuan, H. (2013), "An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates", Mech. Adv. Mater. Struct., 22(4), 248-268. https://doi.org/10.1080/15376494.2012.736055
- Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 54(3), 201-214. https://doi.org/10.1115/1.3097295
- Viswanathan, K.K. and Javed, S. (2016), "Free vibration of anti-symmetric angle-ply cylindrical shell walls using first-order shear deformation theory", J. Vib. Control, 22(7), 1757-1768. DOI: 10.1177/1077546314544893
- Viswanathan, K.K. and Lee, S.K. (2007), "Free vibration of laminated cross-ply plates including shear deformation by spline method", Int. J. Mech. Sci., 49(3), 352-363. https://doi.org/10.1016/j.ijmecsci.2006.08.016
- Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. (2015a), "Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory", Meccanica, 50(12), 3013-3027. https://doi.org/10.1007/s11012-015-0175-3
- Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, I.A. (2015b), "Free vibration of anti-symmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495. https://doi.org/10.1016/j.compstruct.2014.11.075
- Viswanathan, K.K., Aziz, Z.A., Javed, S., Yaacob, Y. and Pullepu, B. (2015c), "Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method", J. Mech. Sci. Technol., 29(5), 2073-2080. https://doi.org/10.1007/s12206-015-0428-z
- Yang, P.C., Nooris, C.H. and Stavsky, Y. (1966), "Elastic wave propogation in heterogeneous plates", Int. J. Solids Struct., 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
- Yang, H.T., Saigal, S., Masud, A. and Kapania, R. (2000), "A survey of recent shell finite elements", Int. J. Numer. Methods Eng., 47(1-3), 101-127. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
- Zhen, W. and Wanji, C. (2006), "Free vibration of laminated composite and sandwich plates using global-local higher-order theory", J. Sound Vib., 298(1), 333-349. https://doi.org/10.1016/j.jsv.2006.05.022
피인용 문헌
- Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
- Free Vibration of Annular Circular Plates Based on Higher-Order Shear Deformation Theory: A Spline Approximation Technique vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5440376