References
- Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2017), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput. Appl., pp. 1-23. DOI: https://doi.org/10.1007/s00521-017-3284-1
- Arikoglu, A. and Ozkol, I. (2005), "Solution of boundary value problems for integro-differential equations by using transform method", Appl. Math. Comput., 168(2), 1145-1158. https://doi.org/10.1016/j.amc.2004.10.009
- Azrar, L., Benamar, R. and White, R.G. (1999), "A semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes. Part I: general theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893
- Babilio, E. (2013), "Dynamics of an axially functionally graded beam under axial load", Eur. Phys. J. Special Topics, 222(7), 1519-1539. https://doi.org/10.1140/epjst/e2013-01942-8
- Babilio, E. (2014), "Dynamics of functionally graded beams on viscoelastic foundation", Int. J. Struct. Stabil. Dyn., 14(8), 1440014. https://doi.org/10.1142/S0219455414400148
- Baghani, M., Jafari-Talookolaei, R.A. and Salareih, H. (2011), "Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic", Appl. Math. Model., 35(1), 130-138. https://doi.org/10.1016/j.apm.2010.05.012
- Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H. and Ratazzi, A.R. (2013), "Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions", Meccanica, 48(6), 1289-1311. https://doi.org/10.1007/s11012-012-9668-5
- Basu, D. and Kameswara Rao, N.S.V. (2013), "Analytical solutions for Euler-Bernoulli beam on visco-elastic foundation subjected to moving load", Int. J. Numer. Anal. Meth. Geomech., 37(8), 945-960. https://doi.org/10.1002/nag.1135
- Bayat, M. and Pakar, I. (2017a), "Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., Int. J., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
- Bayat, M. and Pakar, I. (2017b), "Analytical study on non-natural vibration equations", Steel Compos. Struct., Int. J., 24(6), 671-677.
- Bayat, M., Pakar, I. and Cveticanin, L. (2014), "Nonlinear free vibration of systems with inertia and static typa cubic nonlinearities: An analytical approach", Mechanism and Machine Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Bayat, M., Pakar, I. and Bayat, M. (2016), "Nonlinear vibration of rested Euler-Bernoulli beams on linear elastic foundation using Hamiltonian approach", Vibroengineering PROCEDIA, 10, 89-94.
- Bayat, M., Pakar, I. and Cao, M.S. (2017), "Energy based approach for solving conservative nonlinear systems", Earthq. Struct., Int. J., 13(2), 131-136.
- Cheng, C.J., Chiu, S.W., Cheng, C.B. and Wu, J.Y. (2012), "Customer lifetime value prediction by a Markov chain based data mining model: Application to an auto repair and maintenance company in Taiwan", Scientia Iranica, 19(3), 849-855. https://doi.org/10.1016/j.scient.2011.11.045
- Civalek, O. (2006), "Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation", J. Sound Vib., 294(4), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041
- Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
- Clementi, F., Demeio, L., Mazzilli, C.E.N. and Lenci, S. (2015), "Nonlinear vibrations of non-uniform beams by the MTS asymptotic expansion method", Continuum. Mech. Thermodyn., 27(4-5), 703-717. https://doi.org/10.1007/s00161-014-0368-3
- Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound Vib., 331(10), 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
- Fang, J. and Zhou, D. (2015), "Free vibration analysis of rotating axially functionally graded-tapered beams using Chebyshev-Ritz method", Mater. Res. Innov., 19(sub5), 1255-1262.
- Ghasemi, A.R. and Mohandes, M. (2016), "The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM", Adv. Aircr. Spacecr. Sci., 3(4), 379-397. https://doi.org/10.12989/aas.2016.3.4.379
- He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlinear Sci. Numer. Simul., 9(2), 211-212. https://doi.org/10.1515/IJNSNS.2008.9.2.211
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Physics Letters A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- He, P., Liu, Z.S. and Li, C. (2013), "An improved beam element for beams with variable axial parameters", Shock Vib., 20(4), 601-617. https://doi.org/10.1155/2013/708910
- Jafari-Talookolaei, R.A., Salareih, H. and Kargarnovin, M.H. (2011), "Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation", Acta Mechanica, 219(1-2), 65-75. https://doi.org/10.1007/s00707-010-0439-x
- Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Current Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
- Kapania, R.K. and Goyal, V.K. (2002), "Free vibration of unsymmetrically laminated beams having uncertain ply orientations", AIAA Journal, 40(11), 2336-2340. https://doi.org/10.2514/2.1573
- Kapania, R.K. and Raciti, S. (1989), "Nonlinear vibrations of unsymmetrically laminated beams", AIAA, 27(2), 201-210. https://doi.org/10.2514/3.10082
- Lenci, S. and Clementi, F. (2012a), "Effects of shear stiffness, rotatory and axial inertia, and interface stiffness on free vibrations of a two-layer beam", J. Sound Vib., 331(24), 5247-5267. https://doi.org/10.1016/j.jsv.2012.07.004
- Lenci, S. and Clementi, F. (2012b), "On flexural vibrations of shear deformable laminated beams", Proceedings of ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, November, pp. 581-590.
- Lenci, S., Clementi, F. and Mazzilli, C.E.N. (2013), "Simple formulas for the natural frequencies of non-uniform cables and beams", Int. J. Mech. Sci., 77, 155-163. https://doi.org/10.1016/j.ijmecsci.2013.09.028
- Lenci, S., Clementi, F. and Warminski, J. (2015), "Nonlinear free dynamics of a two-layer composite beam with different boundary conditions", Meccanica, 50(3), 675-688. https://doi.org/10.1007/s11012-014-9945-6
- Lewandowski, R. (1987), "Application of the Ritz method to the analysis of nonlinear free vibrations of beams", J. Sound Vib., 114(1), 91-101. https://doi.org/10.1016/S0022-460X(87)80236-5
- Navarro, H.A. and Cveticanin, L. (2016), "Amplitude-frequency relationship obtained using Hamiltonian approach for oscillators with sum of non-integer order nonlinearities", Appl. Math. Comput., 291, 162-171.
- Nguyen, N.H. and Lee, D.Y. (2015), "Bending analysis of a single leaf flexure using higher-order beam theory", Struct. Eng. Mech., Int. J., 53(4), 781-790. https://doi.org/10.12989/sem.2015.53.4.781
- Poloei, E., Zamanian, M. and Hosseini, S.A.A. (2017), "Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration", Struct. Eng. Mech., Int. J., 61(2), 193-207. https://doi.org/10.12989/sem.2017.61.2.193
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
- Ramana, P.V. and Prasad, B.R. (2014), "Modified Adomian Decomposition Method for Van der Pol equations", Int. J. Non-Linear Mech., 65, 121-132. https://doi.org/10.1016/j.ijnonlinmec.2014.03.006
- Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., Int. J., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065
- Sheikholeslami, M. and Ganji, D.D. (2013), "Heat transfer of Cu-water nanofluid flow between parallel plates", Powder Technol., 235, 873-879. https://doi.org/10.1016/j.powtec.2012.11.030
- Sheikholeslami, M. and Ganji, D.D. (2015), "Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM", Comput. Method. Appl. Mech. Eng., 283, 651-663. https://doi.org/10.1016/j.cma.2014.09.038
- Sheikholeslami, M. and Ganji, D.D. (2016), "Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect", J. Molecul. Liquids, 224, 526-537. https://doi.org/10.1016/j.molliq.2016.10.037
- Sheikholeslami, M., Ellahi, R., Ashorynejad, H.R., Domairry, G. and Hayat, T. (2014), "Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium", J. Comput. Theor. Nanosci., 11(2), 486-496. https://doi.org/10.1166/jctn.2014.3384
- Sheikholeslami, M., Ganji, D.D. and Rashidi, M.M. (2016), "Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model", J. Magnet. Magnet. Mater., 416, 164-173. https://doi.org/10.1016/j.jmmm.2016.05.026
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Singh, G., Rao, V. and Iyengar, N.G.R. (1991), "Analysis of the nonlinear vibrations of unsymmetrically laminated composite beams", AIAA, 29(10), 1727-1804. https://doi.org/10.2514/3.10796
- Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), "Nonlinear bending of thin and thick unsymmetrically laminated composite beams using refined finite element model", Comput. Struct., 42(4), 471-479. https://doi.org/10.1016/0045-7949(92)90114-F
- Szekrenyes, A. (2015), "A special case of parametrically excited systems: Free vibration of delaminated composite beams", Eur. J. Mech. - A/Solids, 49, 82-105. https://doi.org/10.1016/j.euromechsol.2014.07.003
- Wang, L., Ma, J., Li, L., Peng, J. (2013a), "Three-to-one resonant responses of inextensional beams on the elastic foundation", ASME J. Vib. Acoust., 135(1), 011015. https://doi.org/10.1115/1.4007019
- Wang, L., Ma, J., Peng, J. and Li, L. (2013b), "Large amplitude vibration and parametric instability of inextensional beams on the elastic foundation", Int. J. Mech. Sci., 67, 1-9. https://doi.org/10.1016/j.ijmecsci.2012.12.002
- Wang, L., Ma, J., Yang, M., Li, L. and Zhao, Y. (2013c), "Multimode dynamics of inextensional beams on the elastic foundation with two-to-one internal resonances", J. Appl. Mech., 80(6), 061016. https://doi.org/10.1115/1.4023694
- Wang, L., Ma, J., Zhao, Y. and Liu, Q. (2013d), "Refined modeling and free vibration of inextensional beams on the elastic foundation", J. Appl. Mech., 80(4), 041026. https://doi.org/10.1115/1.4023032
- Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Math. Comput. Appl., 15(5), 901-906.
- Yu, Y.P., Wu, B.S. and Lim, C.W. (2012), "Numerical and analytical approximations to large post-buckling deformation of MEMS", Int. J. Mech. Sci., 55(1), 95-103. https://doi.org/10.1016/j.ijmecsci.2011.12.010
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", ActaMechanica, 212, 233-252.
Cited by
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2018, https://doi.org/10.12989/csm.2020.9.6.499