Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Akiyama, H. (1985), Earthquake-Resistant Limit-State Design for Buildings, University of Tokyo Press.
- Akrami, V. and Erfani, S. (2015), "Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)", Steel Compos. Struct., Int. J., 8(3), 641-657.
- Anastasiadis, A., Mosoarca, M. and Gioncu, V. (2012), "Prediction of available rotation capacity and ductility of wide-flange beams: Part 2: Applications", J. Constr. Steel Res., 68(1), 176-191. https://doi.org/10.1016/j.jcsr.2011.08.007
- Chen, Y., Pan, L. and Jia, L.-J. (2017), "Post-buckling ductile fracture analysis of panel zones in welded steel beam-to-column connections", J. Constr. Steel Res., 132, 117-129. https://doi.org/10.1016/j.jcsr.2017.01.015
- Cheng, X., Chen, Y. and Nethercot, D.A. (2013), "Experimental study on H-shaped steel beam-columns with large width-thickness ratios under cyclic bending about weak-axis", Eng. Struct., 49, 264-274. https://doi.org/10.1016/j.engstruct.2012.10.035
- Davies, J.M. and Brown, B. (1996), Plastic Design to BS 5950, Wiley-Blackwell.
- Dawei, L., Kanao, I. and Nakashima, M. (2003), "Effect of local buckling on plastic rotation capacity of wide flange steel beams subjected to cyclic loading", Kou kouzou rombunshuu., 10(37), 61-70. [In Japanese]
- Elkady, A. and Lignos, D.G. (2015), "Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns", Bullet. Earthq. Eng., 13(4), 1097-1118. https://doi.org/10.1007/s10518-014-9640-y
- Eurocode 3 (2005), Design of steel structures Part 1-1: General rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
- Ge, H.B., Jia, L.-J., Kang, L. and Suzuki, T. (2014), "Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii", Steel Compos. Struct., Int. J., 17(6), 851-865. https://doi.org/10.12989/scs.2014.17.6.851
- Gioncu, V. and Petcu, D. (1997a), "Available rotation capacity of wide-flange beams and beam-columns Part 1. Theoretical approaches", J. Constr. Steel Res., 43(1-3), 161-217. https://doi.org/10.1016/S0143-974X(97)00044-8
- Gioncu, V. and Petcu, D. (1997b), "Available rotation capacity of wide-flange beams and beam-columns Part 2. Experimental and numerical tests", J. Constr. Steel Res., 43(1-3), 219-244. https://doi.org/10.1016/S0143-974X(97)00045-X
- Gioncu, V., Mosoarca, M. and Anastasiadis, A. (2012), "Prediction of available rotation capacity and ductility of wide-flange beams: Part 1: DUCTROT-M computer program", J. Constr. Steel Res., 69(1), 8-19. https://doi.org/10.1016/j.jcsr.2011.06.014
- Hall, W.J. (1954), "Shear deflection of wide flange steel beams in the plastic range", Structral Research Series No. 86; University of Illinois Engineering Experiment Station, College of Engineering, University of Illinois at Urbana-Champaign.
- Hasegawa, R. and Ikarashi, K. (2014), "Strength and plastic deformation capacity of H-shaped beam-columns", IABSE Symposium Report.
- Jia, L.-J., Ge, H.B. and Suzuki, T. (2014), "Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers", Steel Compos. Struct., Int. J., 17(5), 687-704. https://doi.org/10.12989/scs.2014.17.5.687
- Jia, L.-J., Ikai, T., Shinohara, K. and Ge, H.B. (2016), "Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading", Constr. Build. Mater., 112, 69-83. https://doi.org/10.1016/j.conbuildmat.2016.02.171
- Jiao, Y., Yamada, S., Kishiki, S. and Shimada, Y. (2011), "Evaluation of plastic energy dissipation capacity of steel beams suffering ductile fracture under various loading histories", Earthq. Eng. Struct. D., 40(14), 1553-1570. https://doi.org/10.1002/eqe.1103
- Kasai, K. and Popov, E.P. (1986a), "General behavior of WF steel shear link beams", J. Struct. Eng. (ASCE), 112(2), 362-382. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(362)
- Kasai, K. and Popov, E.P. (1986b), "Cyclic web buckling control for shear link beams", J. Struct. Eng. (ASCE), 112(3), 505-523. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(505)
- Keisuke, T., Shinji, Y. and Susumu, M. (2006), "Inelastic lateral torsional buckling behavior of H-shaped steel beam-columns", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures. 2006, 831-832. [In Japanese]
- Ko, O., Toshiro, S., Kikuo, I., Yasuhiro, T. and Hideaki, I. (2000), "Evaluation of plastic deformation capacity of H-shaped steel beam considering the influence of shear stress : Part 1. a property of plastic defomation of H-shaped beam with large width-thickness ratio of web", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures, 2000, 487-488. [In Japanese]
- Krawinkler, H. (1992), Guidelines for Cyclic Seismic Testing of Components of Steel Structures, Applied Technology Council.
- Kubiak, T., Kolakowski, Z., Swiniarski, J., Urbaniak, M. and Gliszczynski, A. (2016), "Local buckling and post-buckling of composite channel-section beams-Numerical and experimental investigations", Compos. Part B-Eng., 91, 176-188. https://doi.org/10.1016/j.compositesb.2016.01.053
- Lee, G.C. and Lee, E. (1994), "Local buckling of steel sections under cyclic loading", J. Constr. Steel Res., 29(1-3), 55-70. https://doi.org/10.1016/0143-974X(94)90056-6
- Lin, L., Shinji, Y., Susumu, M. and Tatsuya, S. (2002), "Inelastic lateral torsional buckling behavior of H-shaped steel beam-columns subject to double curvature bending moment : Part 3 analysis and discussion", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures. 2002, 527-528. [In Japanese]
- Lin, L., Yamazaki, S. and Minami, S. (2003), "Experimental study on inelastic lateral torsional buckling of H-shaped steel beam-columns", J. Struct. Constr. Eng., 563, 177-184. [In Japanese]
- Liu, Y., Jia, L.-J., Ge, H.B., Kato, T. and Ikai, T. (2017), "Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading", Eng. Fract. Mech., 176, 38-60. https://doi.org/10.1016/j.engfracmech.2017.02.018
- Nakashima, M. (1994), "Variation of ductility capacity of steel beam-columns", J. Struct. Eng. (ASCE), 120(7), 1941-1960. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(1941)
- Newell, J.D. and Uang, C.-M. (2008), "Cyclic behavior of steel wide-flange columns subjected to large drift", J. Struct. Eng. (ASCE), 134(8), 1334-1342. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1334)
- Niu, S., Rasmussen, K.J. and Fan, F. (2014), "Local-global interaction buckling of stainless steel I-beams. II: Numerical study and design", J. Struct. Eng., ASCE, 141(8), 04014195. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001131
- Noritada, I., Shinji, Y., Susumu, M., Lin, L. and Tatsuya, S. (2002), "Inelastic lateral torsional buckling behavior of H-shaped steel beam-columns subjected to double curvature bending moment : Part 1 test results for monotonic loading and cyclic loading", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures. 2002, 523-524. [In Japanese]
- Richards, P.W. and Uang, C.-M. (2005), "Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity", J. Struct. Eng. (ASCE), 131(10), 1546-1552. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1546)
- Shinji, Y. (2003), "Analysis of lateral torsional buckling behavior of H-shaped steel beam-columns", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures, 2003, 623-624. [In Japanese]
- Shokouhian, M. and Shi, Y. (2014), "Classification of I-section flexural members based on member ductility", J. Constr. Steel Res., 95, 198-210. https://doi.org/10.1016/j.jcsr.2013.12.004
- Shokouhian, M., Shi, Y. and Head, M. (2016), "Interactive buckling failure modes of hybrid steel flexural members", Eng. Struct., 125, 153-166. https://doi.org/10.1016/j.engstruct.2016.07.001
- Vasdravellis, G., Karavasilis, T.L. and Uy, B. (2014), "Design rules, experimental evaluation, and fracture models for high-strength and stainless-steel hourglass shape energy dissipation devices", J. Struct. Eng. (ASCE), 140(11), 04014087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001014
- Xiang, P., Jia, L.-J., Shi, M. and Wu, M. (2017a), "Ultra-low cycle fatigue life of aluminum alloy and its prediction using monotonic tension test results", Eng. Fract. Mech., 186, 449-465. https://doi.org/10.1016/j.engfracmech.2017.11.006
- Xiang, P., Jia, L.-J., Ke, K., Chen, Y. and Ge, H.B. (2017b), "Ductile cracking simulation of uncracked high strength steel using an energy approach", J. Constr. Steel Res., 138, 117-130. https://doi.org/10.1016/j.jcsr.2017.07.002
- Yasuhiro, T., Toshiro, S., Kikuo, I. and Hideaki, I. (2000), "Evaluation of plastic deformation capacity of H-shaped steel beam considering the influence of shear stress : Part2. Evaluation of plastic deformation", Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures. 2002, 489-490. [In Japanese]