Acknowledgement
Supported by : National Natural Science Foundation of China, NHRI
References
- Aitcin, P.C. (2003), "The durability characteristics of high performance concrete: a review", Cement Concrete Compos., 25(4-5), 409-420. https://doi.org/10.1016/S0958-9465(02)00081-1
- ASTM C215 (2014), Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
- ASTM C666 (2015), Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM International, West Conshohocken, PA, USA.
- Chen, F. and Qiao, P. (2015), "Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action", Mater. Struct., 48(8), 2697-2711. https://doi.org/10.1617/s11527-014-0347-y
- Chen, J.J., Guo, B.Q., Liu, H.B., Liu, H. and Chen, P.W. (2014), "Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation", Strain, 50(6), 563-570. https://doi.org/10.1111/str.12118
- Chen, X., Wu, S. and Zhou, J. (2013), "Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete", Constr. Build. Mater., 47(10), 419-430. https://doi.org/10.1016/j.conbuildmat.2013.05.063
- Chen, X., Wu, S. and Zhou, J. (2014), "Experimental study on dynamic tensile strength of cement mortar using split hopkinson pressure bar technique", J. Mater. Civil Eng., ASCE, 26(6), 150-153.
- Chen, X., Xu, L. and Wu, S. (2015), "Influence of pore structure on mechanical behavior of concrete under high strain rates", J. Mater. Civil Eng., ASCE, 28(2), 04015110.
- Choi, W.C. and Yun, H.D. (2014), "Acoustic emission activity of CFRP-strengthened reinforced concrete beams after freeze-thaw cycling", Cold Reg. Sci. Tech., 110, 47-58.
- Daghash, S.M., Soliman, E.M., Kandil, U.F. and Taha, M.M.R. (2016), "Improving impact resistance of polymer concrete using CNTs", Int. J. Concrete Struct. Mater., 10(4), 1-15.
- Hu, J., Qian, Z., Wang, D. and Oeser, M. (2015), "Influence of aggregate particles on mastic and air-voids in asphalt concrete", Constr. Build. Mater., 93, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.05.031
- Issa, M.A., Islam, M.S. and Chudnovsky, A. (2003), "Fractal dimension-a measure of fracture roughness and toughness of concrete", Eng. Fract. Mech., 70(1), 125-137. https://doi.org/10.1016/S0013-7944(02)00019-X
- Jiang, L., Niu, D., Yuan, L. and Fei, Q. (2014) "Durability of concrete under sulfate attack exposed to freeze-thaw cycles", Cold Reg. Sci. Tech., 112, 112-117.
- Jin, S., Zhang, J. and Huang, B. (2013), "Fractal analysis of effect of air void on freeze-thaw resistance of concrete", Constr. Build. Mater., 47(5), 126-130. https://doi.org/10.1016/j.conbuildmat.2013.04.040
- Lai, Y., Guo, H. and Dong, Y. (2009), "Laboratory investigation on the cooling effect of the embankment with l-shaped thermosyphon and crushed-rock revetment in permafrost regions", Cold Reg. Sci. Tech., 58(3), 143-150. https://doi.org/10.1016/j.coldregions.2009.05.002
- Lai, Y., Li, S., Qi, J., Gao, Z. and Chang, X. (2008), "Strength distributions of warm frozen clay and its stochastic damage constitutive model", Cold Reg. Sci. Tech., 53(2), 200-215. https://doi.org/10.1016/j.coldregions.2007.11.001
- Li, W., Luo, Z., Long, C. and Shah, S.P. (2016), "Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading", Mater. Des., 112, 58-66. https://doi.org/10.1016/j.matdes.2016.09.045
- Li, W., Luo, Z., Wu, C. and Shah, S.P. (2017), "Experimental and numerical studies on impact behaviors of recycled aggregate concrete-filled steel tube after exposure to elevated temperature", Mater. Des., 136, 103-118. https://doi.org/10.1016/j.matdes.2017.09.057
- Li, W., Pour-Ghaz, M., Castro, J. and Weiss, J. (2012), "Water absorption and critical degree of saturation relating to freezethaw damage in concrete pavement joints", J. Mater. Civil Eng., ASCE, 24(3), 299-307. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000383
- Lim, K.M., Shin, H.O., Kim, D.J., Yoon, Y.S. and Lee, J.H. (2016), "Numerical assessment of reinforcing details in beamcolumn joints on blast resistance", Int. J. Concrete Struct. Mater., 10(s3), 1-10.
- Liu, M.H. and Wang, Y.F. (2012), "Damage constitutive model of fly ash concrete under freeze-thaw cycles", ASCE J. Mater. Civil Eng., 24(9), 1165-1174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000491
- Lu, H., Peterson, K. and Chernoloz, O. (2016), "Measurement of entrained air-void parameters in portland cement concrete using micro x-ray computed tomography", Int. J. Pavement Eng., 6, 1-13.
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., ASCE, 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Ozbolt, J., Sharma, A., Irhan, B. and Sola, E. (2014), "Tensile behavior of concrete under high loading rates", Int. J. Impact Eng., 69, 55-68. https://doi.org/10.1016/j.ijimpeng.2014.02.005
- Pia, G., and Sanna, U. (2013), "A geometrical fractal model for the porosity and thermal conductivity of insulating concrete", Constr. Build.Mater., 44, 551-556. https://doi.org/10.1016/j.conbuildmat.2013.03.049
- Richard, B., Quiertant, M., Bouteiller, V., Delaplace, A., Ragueneau, F. and Cremona, C. (2016). Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample", Comput Concrete, 18(3), 421-439. https://doi.org/10.12989/cac.2016.18.3.421
- Richardson, D.N. and Lusher, S.M. (2015), "Prediction of freezing-and-thawing durability of concrete", ACI Mater. J., 112(3), 439-450.
- Safiuddin, M., Gonzalez, M., Cao, J. and Tighe, S.L. (2014), "State-of-the-art report on use of nano-materials in concrete", Int. J. Pavement Eng., 15(10), 940-949. https://doi.org/10.1080/10298436.2014.893327
- Shang, H.S., Zhao, T.J. and Cao, W.Q. (2015), "Bond behavior between steel bar and recycled aggregate concrete after freezethaw cycles", Cold Reg. Sci. Tech., 118, 38-44. https://doi.org/10.1016/j.coldregions.2015.06.008
- Sun, W., Mu, R., Luo, X. and Miao, C. (2002), "Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete", Cement Concrete Res., 32(12), 1859-1864. https://doi.org/10.1016/S0008-8846(02)00769-X
- Sun, W., Zhang, Y.M., Yan, H.D. and Mu, R. (1999), "Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles", Cement Concrete Res., 29(9), 1519-1523. https://doi.org/10.1016/S0008-8846(99)00097-6
- Tanyildizi, H. (2017), "Prediction of compressive strength of lightweight mortar exposed to sulfate attack", Comput Concrete, 19(2), 217-226. https://doi.org/10.12989/cac.2017.19.2.217
- Tian, Z., Bu, J., Bian, C. and Peng, Z. (2016), "Effect of strain rate and saturation on uniaxial dynamic compressive behaviours of mortar", Int. J. Pavement Eng., 17(9), 789-798. https://doi.org/10.1080/10298436.2015.1019499
- Wang, Z.L., Liu, Y.S. and Shen, R.F. (2008), "Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression", Constr. Build. Mater., 22(5), 811-819. https://doi.org/10.1016/j.conbuildmat.2007.01.005
- Xiao, J., Li, L., Shen, L. and Chi, S.P. (2015), "Compressive behaviour of recycled aggregate concrete under impact loading", Cement Concrete Compos., 71, 46-55. https://doi.org/10.1016/j.cemconres.2015.01.014
- Yang, X. and Wang, F. (2015), "Random-fractal-method-based generation of meso-model for concrete aggregates", Powder Tech., 284(14), 63-77. https://doi.org/10.1016/j.powtec.2015.06.045
- Yun, Y. and Wu, Y.F. (2011), "Durability of CFRP-concrete joints under freeze-thaw cycling", Cold Reg. Sci. Tech., 65(3), 401-412. https://doi.org/10.1016/j.coldregions.2010.11.008
- Zhang, X.X., Elazim, A.M.A., Ruiz, G. and Yu, R.C. (2014), "Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates", Int. J. Impact Eng., 71(6), 89-96. https://doi.org/10.1016/j.ijimpeng.2014.04.009
-
Zhou, Z., Li, X., Zuo, Y. and Hong, L. (2006), "Fractal characteristics of rock fragmentation at strain rate of
$10^{0}\;-10^{2}\;s^{-1}$ ", J. Central South Univ. Technol., Mater. Sci. Edi., 13(3), 290-294. https://doi.org/10.1007/s11771-006-0126-1