References
- Azambuja, M. and Chen, X. (2014), "Risk assessment of a readymix concrete supply chain", Construction Research Congress 2014: Construction in a Global Network, 1695-1703.
- Boukendakdji, O., Kadri, E.H. and Kenai, S. (2012), "Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete", Cement Concrete Compos., 34(4), 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013
- Burciaga-Diaz, O., Escalante-Garcia, J.I., Arellano-Aguilar, R. and Gorokhovsky, A. (2010), "Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements", J. Am. Ceramic Soc., 93(2), 541-547. https://doi.org/10.1111/j.1551-2916.2009.03414.x
- Chou, C. (2009), "Effects of fly ash and slag on compressive strength and toughness of high performance concrete", Institute of Civil Engineering National Chung Hsing University for the Degree of Master of Engineering.
- Collins, F. and Sanjayan, J. (1999), "Workability and mechanical properties of alkali activated slag concrete", Cement Concrete Res., 29(3), 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
- Gopalan, M. (1993), "Nucleation and pozzolanic factors in strength development of class fly ash concrete", ACI Mater. J., 90(2), 117-121.
- Gulbandilar, E. and Kocak, Y. (2016), "Application of expert systems in prediction of flexural strength of cement mortars", Comput. Concrete, 18(1), 1-16. https://doi.org/10.12989/cac.2016.18.1.001
- Howard, I.L., Shannon, J., Cost, V.T. and Stovall, M. (2015), "Davis wade stadium expansion and renovation: Performance of concrete produced with portland-limestone cement, fly ash, and slag cement", J. Mater. Civil Eng., 27(12), 04015044. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001305
- Huang, W.L., Wang, H.Y. and Chen, J.H. (2016), "A study of the fresh properties of Recycled ready-mixed soil materials (RRMSM)", Comput. Concrete, 17(6), 787-799. https://doi.org/10.12989/cac.2016.17.6.787
- Huda, M.N., Jumat, M.Z.B., Islam, A.B.M.S., Darain, K.M.U., Obaydullah, M. and Hosen, M.A. (2017), "Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete", Comput. Concrete, 19(5), 515-526. https://doi.org/10.12989/cac.2017.19.5.515
- Johari, M.M., Brooks, J., Kabir, S. and Rivard, P. (2011), "Influence of supplementary cementitious materials on engineering properties of high strength concrete", Constr. Build. Mater., 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013
- Karim, M.R., Hashim, H. and Razak, H.A. (2016), "Assessment of pozzolanic activity of palm oil clinker powder", Constr. Build. Mater., 127, 335-343. https://doi.org/10.1016/j.conbuildmat.2016.10.002
- Karim, M.R., Hashim, H. and Razak, H.A. (2016), "Thermal activation effect on palm oil clinker properties and their influence on strength development in cement mortar", Constr. Build. Mater., 125, 670-678. https://doi.org/10.1016/j.conbuildmat.2016.08.092
- Karim, M.R., Hashim, H., Razak, H.A. and Yusoff, S. (2017), "Characterization of palm oil clinker powder for utilization in cement-based applications", Constr. Build. Mater., 135, 21-29. https://doi.org/10.1016/j.conbuildmat.2016.12.158
- Karim, M.R., Hossain, M.M. and Yusoff, S.B. (2017). "Engineering and sustainability aspect of palm oil shell powder in cement", AIP Conference Proceedings, AIP Publishing.
- Khan, K.M. and Ghani, U. (2004), "Effect of blending of portland cement with ground granulated blast furnace slag on the properties of concrete", 29th Conference on our World in Concrete & Structures, Singapore.
- Kim, T., Tae, S. and Roh, S. (2013), "Assessment of the CO 2 emission and cost reduction performance of a low-carbonemission concrete mix design using an optimal mix design system", Ren. Sustain. Energy Rev., 25, 729-741. https://doi.org/10.1016/j.rser.2013.05.013
- Kocaba, V., Gallucci, E. and Scrivener, K.L. (2012), "Methods for determination of degree of reaction of slag in blended cement pastes", Cement Concrete Res., 42(3), 511-525. https://doi.org/10.1016/j.cemconres.2011.11.010
- Kourounis, S., Tsivilis, S., Tsakiridis, P., Papadimitriou, G. and Tsibouki, Z. (2007), "Properties and hydration of blended cements with steelmaking slag", Cement Concrete Res., 37(6), 815-822. https://doi.org/10.1016/j.cemconres.2007.03.008
- Kuo, W.T. and Shu, C.Y. (2015), "Expansion behavior of lowstrength steel slag mortar during high-temperature catalysis", Comput. Concrete, 16(2), 261-274. https://doi.org/10.12989/cac.2015.16.2.261
- Lee, C.L., Huang, R., Lin, W.T. and Weng, T.L. (2012), "Establishment of the durability indices for cement-based composite containing supplementary cementitious materials", Mater. Des., 37, 28-39. https://doi.org/10.1016/j.matdes.2011.12.030
- Lei, L. and Plank, J. (2012), "Synthesis, working mechanism and effectiveness of a novel cycloaliphatic superplasticizer for concrete", Cement Concrete Res., 42(1), 118-123. https://doi.org/10.1016/j.cemconres.2011.09.003
- Li, Y., Liu, Y., Gong, X., Nie, Z., Cui, S., Wang, Z. and Chen, W. (2016), "Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production", J. Clean. Prod., 120, 221-230. https://doi.org/10.1016/j.jclepro.2015.12.071
- Lin, K.L., Lin, D.F., Wang, W.J., Chang, C.C. and Lee, T.C. (2014), "Pozzolanic reaction of a mortar made with cement and slag vitrified from a MSWI ash-mix and LED sludge", Constr. Build. Mater., 64, 277-287. https://doi.org/10.1016/j.conbuildmat.2014.04.088
- Ludwig, H.M. and Zhang, W. (2015), "Research review of cement clinker chemistry", Cement Concrete Res., 78, 24-37. https://doi.org/10.1016/j.cemconres.2015.05.018
- Mehta, P. (1983), "Puzzolanic and cementitious by products as mineral admixtures for concrete, fly ash, silica fuÈme, slag and other mineral byproducts in concrete", Special Publication, 79, 1-46.
- Ozbay, E., Erdemir, M. and Durmus, H.I. (2016), "Utilization and efficiency of ground granulated blast furnace slag on concrete properties-A review", Constr. Build. Mater., 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
- Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
- Pal, S., Mukherjee, A. and Pathak, S. (2003), "Investigation of hydraulic activity of ground granulated blast furnace slag in concrete", Cement Concrete Res., 33(9), 1481-1486. https://doi.org/10.1016/S0008-8846(03)00062-0
- Patra, R.K. and Mukharjee, B.B. (2016), "Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review", Adv. Concrete Constr., 4(4), 283-303. https://doi.org/10.12989/acc.2016.4.4.283
- Piatak, N.M., Parsons, M.B. and Seal, R.R. (2015), "Characteristics and environmental aspects of slag: A review", Appl. Geochem., 57, 236-266. https://doi.org/10.1016/j.apgeochem.2014.04.009
- Qasrawi, H. (2014), "The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the environment", Constr. Build. Mater., 54, 298-304. https://doi.org/10.1016/j.conbuildmat.2013.12.063
- Raghavendra, T. and Udayashankar, B. (2013), "Flow and strength characteristics of CLSM using ground granulated blast furnace slag", J. Mater. Civil Eng., 26(9), 04014050. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000927
- Rahman, M.M., Jumaat, M.Z. and Islam, A.B.M.S. (2017), "Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm", Comput. Concrete, 19(2), 127-131. https://doi.org/10.12989/cac.2017.19.2.127
- Regourd, M. (1980), "Structure and behaviour of slag Portland cement hydrates", Proceedings of the 7th international congress on the chemistry of cement (7th ICCC), 2-26.
- Saikia, N., Cornelis, G., Cizer, O ., Vandecasteele, C., Van Gemert, D., Van Balen, K. and Van Gerven, T. (2012), "Use of Pb blast furnace slag as a partial substitute for fine aggregate in cement mortar", J. Mater. Cycl. Waste Manage., 14(2), 102-112. https://doi.org/10.1007/s10163-012-0043-3
- Shi, C., Guo, T., He, F. and Mo, Y. (2011), Use of High Performance Concrete for Transportation Infrastructures. Emerging Technologies for Material, Design, Rehabilitation, and Inspection of Roadway Pavements, ASCE.
- Shiha, Y.F., Tseng, S.S., Wang, H.Y. and Wei, C.T. (2016), "A study of the replacement of desulphurization slag for sand to ready-mixed soil materials (RMSM)", Comput. Concrete, 17(3), 423-433. https://doi.org/10.12989/cac.2016.17.3.423
- Shu, C.Y. and Kuo, W.T. (2015), "Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing", Comput. Concrete, 16(3), 487-502. https://doi.org/10.12989/cac.2015.16.3.487
- Standard, A. (2013), C114: Standard Test Methods for Chemical Analysis of Hydraulic Cement. Annual Book of ASTM Standards.
- Taylor, H. (1997), Cement Chemistry, Thomas Telford.
- Wang, H.Y. and Lin, C.C. (2013), "A study of fresh and engineering properties of self-compacting high slag concrete (SCHSC)", Constr. Build. Mater., 42, 132-136. https://doi.org/10.1016/j.conbuildmat.2012.11.020
- Wang, H. (2008), "The effects of elevated temperature on cement paste containing GGBFS", Cement Concrete Compos., 30(10), 992-999. https://doi.org/10.1016/j.cemconcomp.2007.12.003
- Wang, Q., Yan, P. and Mi, G. (2012), "Effect of blended steel slag-GBFS mineral admixture on hydration and strength of cement", Constr. Build. Mater., 35, 8-14. https://doi.org/10.1016/j.conbuildmat.2012.02.085
- Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of slag concrete using a blended cement hydration model", Comput. Concrete, 14(3), 247-262. https://doi.org/10.12989/cac.2014.14.3.247
- Yang, K.H., Cho, A.R. and Song, J.K. (2012), "Effect of waterbinder ratio on the mechanical properties of calcium hydroxidebased alkali-activated slag concrete", Constr. Build. Mater., 29, 504-511. https://doi.org/10.1016/j.conbuildmat.2011.10.062
-
Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2015), "Effect of supplementary cementitious materials on reduction of
$CO_2$ emissions from concrete", J. Clean. Prod., 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018 - Yang, K.H. and Song, J.K. (2009), "Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide", J. Mater. Civil Eng., 21(3), 119-127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119)
- Young, J., Bournazel, J. and Malier, Y. (1996), "Highly reactive dicalcium silicates for belite cements", International RILEM Conference on Concrete: from Material to Structure, RILEM Publications SARL.