References
- AASHTO (1998), Load Resistance and Factor Design Bridge Design Specifications, SI Units, Second Edition, American Association of State Highway Transportation, Offices, Washington, DC.
- ABAQUS/Standard User's Manuals (2002), Version 6.3, Hibbitt, Karlsson and Sorensen, Inc., USA.
- Ahmed, A. (2014), "Modelling of reinforced concrete beam subjected to impact, vibration using ABAQUS", Int. J. Civil Struct. Eng., 4(3), 227.
- Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finiteelement analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158)
- Bath, E.K. and Wu, H. (2006), "Efficient nonlinear finite element modeling of slab on steel stringer bridges", Finite Elem. Anal. Des., 42, 1304-1313. https://doi.org/10.1016/j.finel.2006.06.004
- CEB (1983), Application of the Finite Element Method for Two-Dimensional Reinforced Concrete Structures, Bulletin No. 159, CEB-FIP.
- DBYBHY (2007), Regulation of Buildings to be Built in Earthquake Regions, Turkish Standards Institute, Ankara.
- Demir, A., Caglar, N., Ozturk, H. and Sumer, Y. (2016), "Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement", Eng. Struct., 120, 158-165. https://doi.org/10.1016/j.engstruct.2016.04.029
- Dogan, A.B. and Anil, O. (2010), "Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface", Comput. Concrete, 7(5), 437-453. https://doi.org/10.12989/cac.2010.7.5.437
- Dominguez, E., Tena-Colunga, A. and Gelacio Juarez-Luna, G. (2015), "Nonlinear finite element modeling of reinforced concrete haunched beams designed to develop a shear failure", Eng. Struct., 105, 99-122. https://doi.org/10.1016/j.engstruct.2015.09.023
- Ellobody, E., Feng, R. and Ve Young, B. (2014), Finite Element Analysis and Design of Metal Structures, Butterworth-Heinemann, Elsevier.
- EUROCODE 2 (2008), Standard Rules Applied in Buildings.
- Fu, K.C. and Lu, F. (2003), "Nonlinear finite-element analysis for highway bridge superstructures", J. Bridge Eng., 8(3), 173-179. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:3(173)
- Gilbert, R.I. and Warner, R.F. (1978), "Tension stiffening in reinforced concrete slabs", J. Struct. Div., 104(ST12), 1885-1900.
- Gupta, A.K. and Maestrini, S.R. (1990), "Tension-stiffening model for reinforced concrete rebars", J. Struct. Eng., 116(3), 769-790. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(769)
- Hall, J.C. and Kostem, C.N. (1980), "Inelastic analysis of steel multigirder highway bridges", Fritz Engineering Lab Report No. 435.1, Lehigh University, PA, USA.
- Hawileh, R.A. (2012), "Nonlinear finite element modeling of RC beams strengthened with NSM FRP rods", Constr. Build. Mater., 27, 461-71. https://doi.org/10.1016/j.conbuildmat.2011.07.018
- Helba, A. and Kennedy, J.B. (1995), "Skew composite bridgesanalysis of ultimate load", Can. J. Civil Eng., 22, 1092-1103. https://doi.org/10.1139/l95-127
- Hibbitt, H., Karlsson, B. and Sorensen, P. (2011), Abaqus Analysis Users Manual, Version 6.11, Dassault Systemes Simulia Corp., Providence, RI, USA.
- Ibrahimbegovic, A., Boulkertous, A., Davenne, L. and Brancherie, D. (2010), "Modelling of reinforced-concrete structures, providing a crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure", Int. J. Numer. Meth. Eng., 83(4), 452-481. https://doi.org/10.1002/nme.2838
- Kmiecik, P. and Kamisski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 625-636.
- Kotsovou, G.M. and Kotsovos, G.M. (2016), "Behavior of RC Beams with non-bonded flexural reinforced: A numerical experiment", Comput. Concrete, 18(2), 165-178. https://doi.org/10.12989/cac.2016.18.2.165
- Larbi, A.S., Agbossou, A. and Hamelin, P. (2013), "Experimental and numerical investigations about textile-reinforced concrete and hybrid solutions for repairing and/or strengthening reinforced concrete beams", Compos. Struct., 99, 152-162. https://doi.org/10.1016/j.compstruct.2012.12.005
- Lee, D.H., Hwang, J.H., Ju, H. and Kim, K.S. (2014), "The application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to shear", Comput. Concrete, 13(1), 49-70. https://doi.org/10.12989/cac.2014.13.1.049
- Lin, J.J., Fafard, M., Beaulieu, D. and Massicotte, B. (1991), "Nonlinear analysis of composite bridges by the finite element method", Comput. Struct., 40(5), 1151-1167. https://doi.org/10.1016/0045-7949(91)90386-Z
- Mahmud, G.H., Yang, Z. and Hassan, A.M.T. (2013), "Experimental and numerical studies of size effects of Ultra High Performance Steel Fiber Reinforced Concrete (UHPFRC) beams", Constr. Build. Mater., 48, 1027-1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
- Nistico, N., Ozbolt, J. and Polimanti, G. (2016), "Modeling of reinforced concrete beams strengthened in shear with CFRP: Microplane-based approach", Compos. Part B, 90, 351-364. https://doi.org/10.1016/j.compositesb.2016.01.009
- Razaqpur, A.G. and Nofal, M. (1990), "Analytical model of nonlinear behavior of composite bridges", J. Struct. Eng., 116(6), 1715-1733. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:6(1715)
- Ruano, G., Isla, F., Sfer, D. and Luccioni, B. (2015), "Numerical modeling of reinforced concrete beams repaired and strengthened with SFRC", Eng. Struct., 86, 168-181. https://doi.org/10.1016/j.engstruct.2014.12.030
- Silva, M.F.A. and Haach, V.G. (2016), "A parametric study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling", Comput. Concrete, 18(2), 215-233 https://doi.org/10.12989/cac.2016.18.2.215
- Solomon, S.M., El-Salakawy, E. and Benmokrane, B. (2010), "Flexural behavior of concrete beams strengthened with near surface mounted fiber reinforced polymer bars", Can. J. Civil Eng., 37(10), 1371-1382. https://doi.org/10.1139/L10-077
- Stramandinoli, R. and La Rovere, H.L. (2012), "FE model for nonlinear analysis of reinforced concrete beams considering shear deformation", Eng. Struct., 35, 244-253. https://doi.org/10.1016/j.engstruct.2011.11.019
- Thevendran, V., Chen, S., Shanmugam, N.E. and Liew, J.Y.R. (1999), "Nonlinear analysis of steel-concrete composite beams curved in plan", Finite Elem. Anal. Des., 32, 125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
- TS EN 1992-1-1/April (2009), Standard Design of Concrete Structures, Turkish Standards Institute, Ankara, Turkey.
- Wegmuller, A.W. (1977), "Overload behavior of composite steelconcrete bridges", J. Struct. Div., 103(ST9), 1799-1819.
- Xu, J., Wu, C., Li, Z. and Ching, C.T. (2015), "Numerical analysis of shear transfer across an initially uncrack reinforced concrete member", Eng. Struct., 102, 296-309. https://doi.org/10.1016/j.engstruct.2015.08.022
- Yaman, C. (2015). "Analytical modeling of the effect of anchors on strengthening reinforced concrete beams with glass fiber plates", Master Thesis, Aksaray University, Aksaray, Turkey.
- Zivaljic, N., Nikolic, Z. and Smoljanovic, H. (2014), "Computational aspects of the combined finite discrete element method in modelling of plane reinforced concrete structures", Eng. Fract. Mech., 131, 669-686 https://doi.org/10.1016/j.engfracmech.2014.10.017
Cited by
- Numerical determination of crack width for reinforced concrete deep beams vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.193
- Finite element modelling of GFRP reinforced concrete beams vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.369
- Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps vol.28, pp.2, 2018, https://doi.org/10.12989/cac.2021.28.2.137