DOI QR코드

DOI QR Code

Dynamic analysis of steel frames with semi-rigid connections

  • 투고 : 2017.08.15
  • 심사 : 2018.01.03
  • 발행 : 2018.02.10

초록

In the steel structures design, beam-to-column connections are usually considered either rigid or pinned, while their actual behavior lies between these two ideal cases. This consideration has a major influence on the results of the local and the global behavior of steel structures. This influence is noticed in the case of a static analysis, and has an important effect in the case of a dynamic analysis. In fact, pinned and rigid nodes can be considered as two specific cases of a semi-rigid behavior. To study the efficiency of the classification adopted in Eurocode 3, a numerical simulation of semi-rigid nodes has been carried out using the software ANSYS. In the aim to validate this simulation, the numerical results are compared to those of an analytical approach. After that, the validated numerical simulation has been used, to evaluate the efficiency of the classification adopted by the Eurocode 3, regarding semi-rigid connections. Finally, a new method is proposed to define a more accurate evaluation about semi-rigid connections.

키워드

참고문헌

  1. Ait Amar Meziane, M., Hadj Henni, A. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16, 293-318. https://doi.org/10.1177/1099636214526852
  2. Akbar, P. and Min (Max), L. (2017), "Direct displacement-based seismic design of semi-rigid steel frames", J. Constr. Steel Res., 128, 201-209. https://doi.org/10.1016/j.jcsr.2016.08.015
  3. Bayo, E., Gracia, J., Gil, B. and Goni, R. (2012), "An efficient cruciform element to model semirigid composite connections for frame analysis", J. Constr. Steel Res., 72, 97-104. https://doi.org/10.1016/j.jcsr.2011.11.006
  4. Bennoun, M., Houari, S.A.M. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23, 423-431. https://doi.org/10.1080/15376494.2014.984088
  5. Bouafia, K., Kaci, A., Houari, S.A.M., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  6. Chan, S.L. and Chui, E.E.T. (2000), Non-Linear Static and Cyclic Analysis of Steel Frames with Semi-Rigid Connections, Elsevier.
  7. Chin-Long, L. and Filip, C.F. (2009), "Efficient beam-column element with variable inelastic end zones", J. Struct. Eng., 1310-1319.
  8. Clough, R.W. and Penzien, J. (1976), Dynamics of Structures, MacGraw-Hill, New York, U.S.A.
  9. Del Savio, A.A., Nethercot, D.A., Vellasco, P.C.G.S., Andrade, S.A.L. and Martha, L.F. (2009), "Generalised component-based model for beam-to-column connections including axial versus moment interaction", J. Constr. Steel Res., 65, 1876-1895. https://doi.org/10.1016/j.jcsr.2009.02.011
  10. Diaz, C., Marti, P., Victoria, M. and Querin, O.M. (2011), "Review on the modelling of joint behaviour in steel frames", J. Constr. Steel Res., 67, 741-758. https://doi.org/10.1016/j.jcsr.2010.12.014
  11. Eurocode 3 (2005), NF EN 1993-1-8: Design of Steel Structures-Part 1-8: Design of Connections (Classmark : P22-318-1).
  12. Euronorms, European I beams (Euronorm 19-57), European standard beams (DIN 1025-1: 1963), European Wide Flange Beams (Euronorm 53-62).
  13. Halil, F.O., Afsin, S. and Tayseer, T. (2017), "Consistent matrices for steel framed structures with semi-rigid connections accounting for shear deformation and rotary inertia effects", Eng. Struct., 137, 194-203. https://doi.org/10.1016/j.engstruct.2017.01.070
  14. Ihaddoudene, A.N.T., Saidani, M. and Chemrouk, M. (2009), "Mechanical model for the analysis of steel frames with semi rigid joints", J. Constr. Steel Res., 65(3), 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
  15. Ihaddoudene, A.N.T., Saidani, M. and Jaspart, J.P. (2017), "Mechanical model for determining the critical load of plane frames with semi-rigid joints subjected to static loads", Eng. Struct., 145, 109-117. https://doi.org/10.1016/j.engstruct.2017.05.005
  16. Kartal, M.E., Basaga, H.B., Bayraktar, A. and Muvafik, M. (2010), "Effects of semi-rigid connection on structural responses", Electr. J. Struct. Eng., 10, 22-35.
  17. Mahi, A., Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Mathemat. Modell., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  18. Min, L. And Scott, A.B. (2003), "Multiple fully stressed designs of steel frame structures with semi-rigid connections", J. Numer. Meth. Eng., 58, 821-838. https://doi.org/10.1002/nme.807
  19. Piluso, V., Rizzano, G. and Tolone, I. (2012), "An advanced mechanical model for composite connections under hogging/sagging moments", J. Constr. Steel Res., 72, 35-50. https://doi.org/10.1016/j.jcsr.2011.10.001
  20. Sokol, Z., Wald, F., Delabre, V., Muzeau, J.P. and Svarc, M. (2002), "Design of endplate joints subject to moment and normal force", Proceedings of the 3rd European Conference on Steel Structures-Eurosteel 2002, Coimbra: Cmm Press, 1219-1228.
  21. Temesgen, W. (2011), Behavior and Modeling of Semi-Rigid Steel Beam to Column Connections, Addis Ababa University, Ethiopia.
  22. Urbonas, K. and Daniunas, A. (2006), "Behaviour of semi-rigid steel beam-to-beam joints under bending and axial forces", J. Constr. Steel Res., 62, 1244-1249. https://doi.org/10.1016/j.jcsr.2006.04.024
  23. Xu, L. (2003), Design and Optimization of Semi-Rigid Framed Structures, Recent Advances in Optimal Structural Design, ASCE, Reston, VA.
  24. Zemri, A., Houari, S.A.M., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54, 693-710. https://doi.org/10.12989/sem.2015.54.4.693