DOI QR코드

DOI QR Code

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab, Department of Mechanical Engineering, University of Zanjan)
  • Received : 2017.04.22
  • Accepted : 2017.11.21
  • Published : 2018.02.10

Abstract

The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

Keywords

References

  1. Ahmadi I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733
  2. Ahmadi I. and Aghdam, M.M. (2010), "A generalized plane strain meshless local Petrov-Galerkin method for the micromechanics of thermomechanical loading of composites", J. Mech. Mater. Struct., 5(4), 549-566. https://doi.org/10.2140/jomms.2010.5.549
  3. Ahmadi I. and Aghdam, M.M. (2010), "Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method", J. Mech. Eng. Sci., 224(8), 1567-1577. https://doi.org/10.1243/09544062JMES1888
  4. Ahmadi, I. (2016), "Edge stresses analysis in laminated thick sandwich cylinder subjected to distributed hygrothermal loading", J. Sandw. Struct. Mater., 1099636216657681.
  5. Ahmadi, I. (2017), "A Galerkin layerwise Formulation for three-dimensional stress analysis in long sandwich plates", Steel Compos. Struct., 24(5), 523-536. https://doi.org/10.12989/SCS.2017.24.5.523
  6. Ahmadi, I. and Najafi, M. (2016), Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells. Steel Compos. Struct., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193
  7. Benkhedda, A., Tounsi, A. and Adda Bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82, 623-635.
  8. Boukert, B., Benkhedda, A., Bedia, E.A. and Khodjet-Kesba, M. (2017), "Hygrothermomechanical behavior of thick composite plates using high order theory", Proc. Struct. Integr., 5, 115-122. https://doi.org/10.1016/j.prostr.2017.07.076
  9. Brischetto, S. (2012), "Hygrothermal loading effects in bending analysis of multilayered composite plates", CMES-Comput. Model. Eng. Sci., 88(5), 367-418.
  10. Brischetto, S. (2013), "Hygrothermoelastic analysis of multilayered composite and sandwich shells", J. Sandw. Struct. Mater., 15(2), 168-202. https://doi.org/10.1177/1099636212471358
  11. Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", J. Sol. Struct., 37, 435-459. https://doi.org/10.1016/S0020-7683(99)00014-1
  12. Davi, G. and Milazzo, A. (1997), "Boundary element solution for free edge stresses in composite laminates", J. Appl. Mech., 64(4), 877-884. https://doi.org/10.1115/1.2788995
  13. Farley, G.L. and Herakovich, C.T. (1978), "Influence of two-dimensional hygrothermal gradients on interlaminar stresses near free edges", Adv. Compos. Mater.-Environ. Effects, 143-159.
  14. Goodsell, J., Pagano, N.J., Kravchenko, O. and Pipes, R.B. (2013), "Interlaminar stresses in composite laminates subjected to anticlastic bending deformation", J. Appl. Mech., 80(4), 041020. https://doi.org/10.1115/1.4007969
  15. Goodsell, J. and Pipes, R.B. (2016), "Free-edge interlaminar stresses in angle-ply laminates: A family of analytic solutions", J. Appl. Mech., 83(5), 051010. https://doi.org/10.1115/1.4032766
  16. Hayashi, T. (1967), "Analytical study of interlaminar shear stresses in a laminated composite plate", Trans. Jap. Soc. Aeronaut. Eng. Space Sci., 10(17), 43-48.
  17. Herakovich, C.T. (1976), "On thermal edge effects in composite laminates", J. Mech. Sci., 18(3), 129-134. https://doi.org/10.1016/0020-7403(76)90062-X
  18. Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", J. Mech. Sci., 90, 16-24. https://doi.org/10.1016/j.ijmecsci.2014.11.003
  19. Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49, 65-75. https://doi.org/10.1016/S0263-8223(99)00126-9
  20. Kim, H.S., Cho, M., Lee, J., Deheeger, A., Grediac, M. and Mathias, J.D. (2010), "Three-dimensional stress analysis of a composite patch using stress functions", J. Mech. Sci., 52, 1646-1659. https://doi.org/10.1016/j.ijmecsci.2010.08.006
  21. Kim, T. and Atluri, S.N. (1995), "Analysis of edge stresses in composite laminates under combined thermo-mechanical loading, using a complementary energy approach", Comput. Mech., 16, 83-97. https://doi.org/10.1007/BF00365862
  22. Lee, S.S. and Kim, B.S. (1997), "Boundary element analysis of singular thermal stresses in a unidirectional laminate", Struct. Eng. Mech., 5(6), 705-713. https://doi.org/10.12989/sem.1997.5.6.705
  23. Lekhnitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publisher, Moscow, 104.
  24. Lo, S.H., Zhen, W.U., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92, 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034
  25. Lu, X. and Liu, D. (1992), "An interlaminar shear stress continuity theory for both thin and thick composite laminates", J. Appl. Mech., 59(3), 502-509. https://doi.org/10.1115/1.2893752
  26. Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001
  27. Mittelstedt, C. and Becker, W. (2004), "Interlaminar stress concentrations in layered structures-part I: A selective literature survey on the free-edge effect since 1967", J. Compos. Mater., 38, 1037-1062. https://doi.org/10.1177/0021998304040566
  28. Morton, S.K. and Webber, J.P.H. (1993), "Interlaminar failure due to mechanical and thermal stresses at the free edges of laminated plates", Compos. Sci. Technol., 47(1), 1-13. https://doi.org/10.1016/0266-3538(93)90090-4
  29. Morton, S.K. and Webber, J.P.H. (1993), "An analytical solution for the thermal stresses at the free-edges of laminated plates", Compos. Sci. Technol., 46, 175-185. https://doi.org/10.1016/0266-3538(93)90173-E
  30. Murugesan, N. and Rajamohan, V. (2015), "Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading", Steel Compos. Struct., 18(3), 583-601. https://doi.org/10.12989/scs.2015.18.3.583
  31. Murugesan, N. and Rajamohan, V. (2016), "Interlaminar shear stresses in laminated composite plates under thermal and mechanical loading", Mech. Adv. Mater. Struct., 23(5), 554-564. https://doi.org/10.1080/15376494.2015.1007190
  32. Naidu, N.V.S. and Sinha, P.K. (2005), "Nonlinear finite element analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 69, 387-395. https://doi.org/10.1016/j.compstruct.2004.07.019
  33. Nath, J.K. and Kapuria, S. (2013), "Global-local and zigzag-local theories for direct transverse shear stress computation in piezolaminated plates under thermal loading", J. Mech. Sci., 75, 158-169. https://doi.org/10.1016/j.ijmecsci.2013.06.015
  34. Nguyen, T.D. and Nguyen, D.H. (2007), "Interlaminar stresses and delamination of composite laminates under extension and bending", Struct. Eng. Mech., 25(6).
  35. Padhi, A. and Pandit, M.K. (2016), "Behaviour of sandwich laminates subjected to thermal loading using higher-order zig-zag theory", J. Sandw. Struct. Mater., 18(2), 174-199. https://doi.org/10.1177/1099636215613487
  36. Pagano, N.J. (1974), "On the calculation of interlaminar normal stress in composite laminate", J. Compos. Mater., 8(1), 65-81. https://doi.org/10.1177/002199837400800106
  37. Pantano, A. and Averill, R.C. (2000), "A 3D zig-zag sublaminate model for analysis of thermal stresses in laminated composite and sandwich plate", J. Sandw. Struct. Mater., 2(3), 288-312. https://doi.org/10.1177/109963620000200307
  38. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56, 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  39. Puppo, A.H. and Evensen, H.A. (1970), "Interlaminar Shear in laminated composites under generalized plane stress", J. Compos. Mater., 4, 204-220. https://doi.org/10.1177/002199837000400206
  40. Singh, S.K. and Chakrabarti, A. (2017), "Hygrothermal analysis of laminated composites using $C^0$ FE model based on higher order zigzag theory", Steel Compos. Struct., 23(1), 41-51. https://doi.org/10.12989/scs.2017.23.1.041
  41. Tahani, M. and Nosier, A. (2003), "Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading", Compos. Struct., 60, 91-103. https://doi.org/10.1016/S0263-8223(02)00290-8
  42. Vaddadi, P., Nakamura, T. and Singh R.P. (2003), "Transient hygrothermal stresses in fiber reinforced composites: A heterogeneous characterization approach", Compos. Part A: Appl. Sci. Manufact., 34(8), 719-730. https://doi.org/10.1016/S1359-835X(03)00135-0
  43. Wang, Y.R. and Chou, T.W. (1989), "Three-dimensional transient interlaminar thermal stresses in angle-ply composites", J. Appl. Mech., 56(3), 601-608. https://doi.org/10.1115/1.3176134
  44. Wang, A.S.D. and Crossman, F.W. (1977), "Edge effects on thermally induced stresses in composite laminates", J. Compos. Mater., 11, 300-312. https://doi.org/10.1177/002199837701100305
  45. Wang, S.S. and Choi, I. (1982), "Boundary-layer hygroscopic stresses in angle-ply composite laminates", AIAA J., 20(11), 1592-1598. https://doi.org/10.2514/3.51223
  46. Yin, W.L. (1994), "Simple solution of the free-edge stresses in composite laminates under thermal and mechanical loads", J. Compos. Mater., 28(6), 573-386. https://doi.org/10.1177/002199839402800605
  47. Zenkour, A.M. (2012), "Hygrothermal analysis of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7(7), 687-700. https://doi.org/10.2140/jomms.2012.7.687
  48. Zenkour, A.M., Mashat, D.S. and Alghanmi, R.A. (2014), "Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory", J. Mech. Mater. Des., 10(2), 213-226. https://doi.org/10.1007/s10999-014-9242-5
  49. Zhu, S.Q., Chen, X. and Wang, X. (2007), "Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load", Struct. Eng. Mech., 25(6), 753-765. https://doi.org/10.12989/sem.2007.25.6.753