Acknowledgement
Supported by : Inha University
References
- Ariaei, A., Ziaei-Rad, S. and Ghayour, M. (2011), "Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load", Arch. Appl. Mech., 81(3), 263-281. https://doi.org/10.1007/s00419-010-0410-2
- Ariaei, A., Ziaei-Rad, S. and Malekzdeh, M. (2013), "Dynamic response of a multi-span Timoshenko beam with internal and external flexible constraints subject to a moving mass", Arch. Appl. Mech., 83(9), 1257-1272. https://doi.org/10.1007/s00419-013-0745-6
- Asnachinda, P., Pinkaew, T. and Laman, J.A. (2008), "Multiple vehicle axle load identification from continuous bridge bending moment response", Eng. Struct., 30(10), 2800-2817. https://doi.org/10.1016/j.engstruct.2008.02.018
- Azizi, N., Saadatpour, M.M. and Mahzoon, M. (2012), "Using spectral element method for analyzing continuous beams and bridges subjected to a moving load", Appl. Math. Model., 36(8), 3580-3592. https://doi.org/10.1016/j.apm.2011.10.019
- Cai, C.W., Cheung, Y.K. and Chan, H.C. (1988), "Dynamic response of infinite continuous beams subjected to a moving force-an exact method", J. Sound Vibr., 123(3), 461-472. https://doi.org/10.1016/S0022-460X(88)80163-9
- Chan, T.H.T. and Ashebo, D.B. (2006), "Theoretical study of moving force identification on continuous bridges", J. Sound Vibr., 295(3), 870-883. https://doi.org/10.1016/j.jsv.2006.01.059
- Cheung, Y.K., Au, F.T.K., Zheng, D.Y. and Cheng, Y.S. (1999), "Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions", J. Sound Vibr., 228(3), 611-628. https://doi.org/10.1006/jsvi.1999.2423
- De Salvo, V., Muscolino, G. and Palmeri, A. (2010), "A substructure approach tailored to the dynamic analysis of multispan continuous beams under moving loads", J. Sound Vibr., 329(15), 3101-3120. https://doi.org/10.1016/j.jsv.2010.02.016
- Dmitriev, A.S. (1974), "Transverse vibrations of a three-span beam under a moving load", Appl. Mech., 10(11), 1263-1266.
- Dmitriev, A.S. (1977), "Transverse vibrations of a two-span beam with elastic central support under the action of a moving point force", Appl. Mech., 13(11), 1160-1163.
- Dmitriev, A.S. (1982), "Dynamics of continuous multispan beams under a moving force", Appl. Mech., 18(2), 179-186.
- Dugush, Y.A. and Eisenberger, M. (2002), "Vibrations of non-uniform continuous beams under moving loads", J. Sound Vibr., 254(5), 911-926. https://doi.org/10.1006/jsvi.2001.4135
- Fryba, L. (1999), Vibration of Solids and Structures under Moving Loads, Thomas Telford Publishing, London.
- Henchi, K., Fafard, M., Dhatt, G. and Talbot, M. (1997), "Dynamic behaviour of multi-span beams under moving loads", J. Sound Vibr., 199(1), 33-50. https://doi.org/10.1006/jsvi.1996.0628
- Hong, S.W. and Kim, J.W. (1999), "Modal analysis of multi-span Timoshenko beams connected or supported by resilient joints with damping", J. Sound Vibr., 227(4), 787-806. https://doi.org/10.1006/jsvi.1999.2385
- Ichikawa, M., Miyakawa, Y. and Matuda, A. (2000), "Vibration analysis of the continuous beam subjected to a moving mass", J. Sound Vibr., 230(3), 493-506. https://doi.org/10.1006/jsvi.1999.2625
- Jiang, R.J., Au, F.T.K. and Cheung, Y.K. (2004), "Identification of vehicles moving on continuous bridges with rough surface", J. Sound Vibr., 274(3), 1045-1063. https://doi.org/10.1016/S0022-460X(03)00664-3
- Johansson, C., Pacoste, C. and Karoumi, R. (2013), "Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads", Comput. Struct., 119, 85-94. https://doi.org/10.1016/j.compstruc.2013.01.003
- Kiani, K., Nikkhoo, A. and Mehri, B. (2010), "Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method", Acta Mech. Sin., 26(5), 721-733. https://doi.org/10.1007/s10409-010-0365-0
- Kim, T., Park, I. and Lee, U. (2017), "Forced vibration of a Timoshenko beam subjected to stationary and moving loads using the modal analysis method", Shock Vibr., 3924921.
- Krawczuk, M., Palacz, M. and Ostachowicz, W. (2003), "The dynamic analysis of a cracked Timoshenko beam by the spectral element method", J. Sound Vibr., 264(5), 1139-1153. https://doi.org/10.1016/S0022-460X(02)01387-1
- Kreyszig, E. (1972), Advanced Engineering Mathematics, John Wiley & Sons, New Jersey, U.S.A.
- Kwon, H.C., Kim, M.C. and Lee, I.W. (1998), "Vibration control of bridges under moving loads", Comput. Struct., 66(4), 473-480. https://doi.org/10.1016/S0045-7949(97)00087-4
- Lee, H.P. (1994), "Dynamic response of a beam with intermediate point constraints subject to a moving load", J. Sound Vibr., 171(3), 361-368. https://doi.org/10.1006/jsvi.1994.1126
- Lee, H.P. (1996), "Dynamic response of a beam on multiple supports with a moving mass", Struct. Eng. Mech., 4(3), 303-312. https://doi.org/10.12989/sem.1996.4.3.303
- Lee, U. (2009), Spectral Element Method in Structural Dynamics, John Wiley & Sons, Singapore.
- Li, W.L. and Xu H. (2009), "An exact Fourier series method for the vibration analysis of multispan beam systems", J. Comput. Nonlin. Dyn., 4(2), 021001. https://doi.org/10.1115/1.3079681
- Lou, P. and Au, F.T.K. (2013), "Finite element formulae for internal forces of Bernoulli-Euler beams under moving vehicles", J. Sound Vibr., 332(6), 1533-1552. https://doi.org/10.1016/j.jsv.2012.11.011
- Lou, P., Yu, Z.W. and Au, F.T.K. (2012), "Rail-bridge coupling element of unequal lengths for analysing train-track-bridge interaction systems", Appl. Math. Model., 36(4), 1395-1414. https://doi.org/10.1016/j.apm.2011.08.041
- Martinez-Castro, A.E., Museros, P. and Castillo-Linares, A. (2006), "Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli-Euler beams traversed by moving loads", J. Sound Vibr., 294(1), 278-297. https://doi.org/10.1016/j.jsv.2005.11.009
- Newland, D.E. (1993), Random Vibrations: Spectral and Wavelet Analysis, Longman, New York, U.S.A.
- Petyt, M. (2010), Introduction to Finite Element Vibration Analysis, Cambridge University Press, New York, U.S.A.
- Sarvestan, V., Mirdamadi, H.R., Ghayour, M. and Mokhtari, A. (2015), "Spectral finite element for vibration analysis of cracked viscoelastic Euler-Bernoulli beam subjected to moving load", Acta Mech., 226(12), 4259-4280. https://doi.org/10.1007/s00707-015-1491-3
- Song, Y., Kim, T. and Lee, U. (2016), "Vibration of a beam subjected to a moving force: Frequency-domain spectral element modeling and analysis", J. Mech. Sci., 113, 162-174. https://doi.org/10.1016/j.ijmecsci.2016.04.020
- Szylko-Bigus, O. and Sniady, P. (2015), "Dynamic response of a Timoshenko beam to a continuous distributed moving load", Struct. Eng. Mech., 54(4), 771-792. https://doi.org/10.12989/sem.2015.54.4.771
- Tang, C.C. and Wang, Y.C. (2002), "Dynamic characteristics of elastic beams subjected to traffic loads", Struct. Eng. Mech., 13(2), 211-230. https://doi.org/10.12989/sem.2002.13.2.211
- Tehrani, M. and Eipakchi, H.R. (2012), "Response determination of a viscoelastic Timoshenko beam subjected to moving load using analytical and numerical methods", Struct. Eng. Mech., 44(1), 1-13. https://doi.org/10.12989/sem.2012.44.1.001
- Wang, J.F. and Lin, C.C. and Chen, B.L. (2003), "Vibration suppression for high-speed railway bridges using tuned mass dampers", J. Sol. Struct., 40(2), 465-491. https://doi.org/10.1016/S0020-7683(02)00589-9
- Wang, R.T. (1997), "Vibration of multi-span Timoshenko beams to a moving force", J. Sound Vibr., 207(5), 731-742. https://doi.org/10.1006/jsvi.1997.1188
- Wang, R.T. and Lin, T.Y. (1998), "Random vibration of multi-span Timoshenko beam due to a moving load", J. Sound Vibr., 213(1), 127-138. https://doi.org/10.1006/jsvi.1998.1509
- Wang, R.T. and Sang, Y.L. (1999), "Out-of-plane vibration of multi-span curved beam due to moving loads", Struct. Eng. Mech., 7(4), 361-375. https://doi.org/10.12989/sem.1999.7.4.361
- Wu, J.J., Whittaker, A.R. and Cartmell, M.P. (2000), "The use of finite element techniques for calculating the dynamic response of structures to moving loads", Comput. Struct., 78(6), 789-799. https://doi.org/10.1016/S0045-7949(00)00055-9
- Wu, J.S. and Dai, C.W. (1987), "Dynamic responses of multispan nonuniform beam due to movin 0.5 줄g loads", J. Struct. Eng., 113(3), 458-474. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(458)
- Xu, H. and Li, W.L. (2008), "Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans", J. Sound Vibr., 312(4), 736-753. https://doi.org/10.1016/j.jsv.2007.11.011
- Zheng, D.Y., Cheung, Y.K., Au, F.T.K. and Cheng, Y.S. (1998), "Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions", J. Sound Vibr., 212(3), 455-467. https://doi.org/10.1006/jsvi.1997.1435
- Zhu, X.Q. and Law, S.S. (1999), "Moving forces identification on a multi-span continuous bridge", J. Sound Vibr., 228(2), 377-396. https://doi.org/10.1006/jsvi.1999.2416