References
- Ayvaz, Y. and Durmus, A. (1995), "Earhquake analysis of simply supported reinforced concrete slabs", J. Sound Vibr., 187(3), 531-539. https://doi.org/10.1006/jsvi.1995.0539
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
- Belounar, L. and Guenfound, M. (2005), "A new rectangular finite element based on the strain approach for plate bending", Thin-Wall. Struct., 43, 47-63. https://doi.org/10.1016/j.tws.2004.08.003
- Bergan, P.G. and Wang, X. (1984), "Quadrilateral plate bending elements with shear deformations", Comput. Struct., 19(1-2) 25-34. https://doi.org/10.1016/0045-7949(84)90199-8
- Brezzi, F. and Marini, L.D. (2003), "A nonconforming element for the Reissner-Mindlin plate", Comput. Struct., 81, 515-522. https://doi.org/10.1016/S0045-7949(02)00418-2
- Caldersmith, G.W. (1984), "Vibrations of orthotropic rectangular plates", ACUSTICA, 56, 144-152.
- Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area co-ordinate method: Anew element for Mindlin-Reissner plate", J. Numer. Meth. Eng., 66, 1-45. https://doi.org/10.1002/nme.1533
- Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., Canada.
- Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1
- Grice, R.M. and Pinnington, R.J. (2002), "Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances", J. Sound Vibr., 249(3), 499-527. https://doi.org/10.1006/jsvi.2001.3847
- Gunagpeng, Z., Tianxia, Z. and Yaohui, S. (2012), "Free vibration analysis of plates on Winkler elastic foundation by boundary element method", Opt. Electr. Mater. Appl. II, 529, 246-251.
- Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate element with substitute shear strain fields", Comput. Struct., 23(3), 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
- Hughes, T.J.R., Taylor, R.L. and Kalcjai, W. (1977), "Simple and efficient element for plate bending", J. Numer. Meth. Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005
- Jahromim, H.N., Aghdam, M.M. and Fallah, A. (2013), "Free vibration analysis of Mindlin plates partially resting on Pasternak foundation", J. Mech. Sci., 75, 1-7. https://doi.org/10.1016/j.ijmecsci.2013.06.001
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vibr., 31(3), 257-294. https://doi.org/10.1016/S0022-460X(73)80371-2
- Leissa, A.W. (1981), "Plate vibration research, 1976-1980: complicating effects", Shock Vibr. Dig., 13(10) 19-36.
- Leissa, A.W (1987), "Plate vibration research, 1981-1985-part II: Complicating effects", Shock Vibr. Dig., 19(3), 10-24. https://doi.org/10.1177/058310248701900304
- Leissa, A.W. (1977), "Recent research in plate vibrations, 1973-1976: Complicating effects", Shock Vibr. Dig., 9(11), 21-35. https://doi.org/10.1177/058310247700901106
- Leissa, A.W. (1977), "Recent research in plate vibrations", 1973-1976: classical theory, Shock Vibr. Dig., 9(10), 13-24. https://doi.org/10.1177/058310247700901005
- Leissa, A.W. (1981), "Plate vibration research, 1976-1980: Classical theory", Shock Vibr. Dig., 13(9), 11-22. https://doi.org/10.1177/058310248101300905
- Leissa, A.W. (1987), "Plate vibration research, 1981-1985-part I: Classical theory", Shock Vibr. Dig., 19(2), 11-18. https://doi.org/10.1177/058310248701900204
- Lok, T.S. and Cheng, Q.H. (2001), "Free and forced vibration of simply supported, orthotropic sandwich panel", Comput. Struct., 79(3), 301-312. https://doi.org/10.1016/S0045-7949(00)00136-X
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
- Ozdemir, Y.I. (2012), "Development of a higher order finite element on a Winkler foundation", Fin. Elem. Anal. Des., 48, 1400-1408. https://doi.org/10.1016/j.finel.2011.08.010
- Ozdemir, Y.I. and Ayvaz, Y. (2009), "Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory", Struct. Eng. Mech., 33(3), 373-385. https://doi.org/10.12989/sem.2009.33.3.373
- Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear locking-free analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331. https://doi.org/10.12989/sem.2007.27.3.311
- Ozgan, K. and Daloglu, A.T. (2012), "Free vibration analysis of thick plates on elastic foundations using modified Vlasov model with higher order finite elements", J. Eng. Mater. Sci., 19, 279-291.
- Ozgan, K. and Daloglu, A.T. (2015), "Free vibration analysis of thick plates resting on Winkler elastic foundation", Chall. J. Struct. Mech., 1(2), 78-83.
- Ozkul, T.A. and Ture, U. (2004), "The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem", Thin-Wall. Struct., 42, 1405-1430. https://doi.org/10.1016/j.tws.2004.05.003
- Providakis, C.P. and Beskos, D.E. (1989), "Free and forced vibrations of plates by boundary and interior elements", J. Numer. Meth. Eng., 28, 1977-1994. https://doi.org/10.1002/nme.1620280902
- Providakis, C.P. and Beskos, D.E. (1989), "Free and forced vibrations of plates by boundary elements", Comput. Meth. Appl. Mech. Eng., 74, 231-250. https://doi.org/10.1016/0045-7825(89)90050-9
- Qian, R.C., Batra, L.M. and Chen. (2003), "Free and forced vibration of thick rectangular plates using higher-order shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 4(5), 519-534.
- Raju, K.K. and Hinton, E. (1980), "Natural frequencies and modes of rhombic Mindlin plates", Earhq. Eng. Struct. Dyn., 8, 55-62. https://doi.org/10.1002/eqe.4290080106
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, A69-A77.
- Reissner, E. (1947), "On bending of elastic plates", Quarter. Appl. Math., 5(1), 55-68. https://doi.org/10.1090/qam/20440
- Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys., 29, 90-95. https://doi.org/10.1002/sapm195029190
- Sakata, T. and Hosokawa, K. (1988), "Vibrations of clamped orthotropic rectangular plates", J. Sound Vibr., 125(3), 429-439. https://doi.org/10.1016/0022-460X(88)90252-0
- Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundation", J. Sound Vibr., 244(2), 299-320. https://doi.org/10.1006/jsvi.2000.3501
- Si, W.J., Lam, K.Y. and Gang, S.W. (2005), "Vibration analysis of rectangular plates with one or more guided edges via bicubic B-spline method", Shock Vibr., 12(5).
- Soh, A.K., Cen, S., Long, Y. and Long, Z. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Sol., 20, 299-326. https://doi.org/10.1016/S0997-7538(00)01129-3
- Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics, Addison Wesley Longman Inc., California, U.S.A.
- Ugural, A.C. (1981), Stresses in Plates and Shells, McGraw-Hill, New York, U.S.A.
- Wanji, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", J. Numer. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Warburton, G.B. (1954), "The vibration of rectangular plates", Proceedings of the Institude of Mechanical Engineers, 168, 371-384. https://doi.org/10.1243/PIME_PROC_1954_168_040_02
- Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
- Woo, K.S., Hong, C.H., Basu, P.K. and Seo, C.G. (2003), "Free vibration of skew Mindlin plates by p-version of F.E.M.", J. Sound Vibr., 268, 637-656. https://doi.org/10.1016/S0022-460X(02)01536-5
- Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211