DOI QR코드

DOI QR Code

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor

혐기성 유동상 반응기의 수리학적 특성

  • Seok, Jong-Hyuk (Department of Chemical and Environmental Technology, Inha Technical College)
  • 석종혁 (인하공업전문대학 화공환경과)
  • Received : 2017.11.10
  • Accepted : 2018.02.02
  • Published : 2018.02.28

Abstract

Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.

기성 유동상 반응기(AFBR)의 수리학적 특성을 고찰하기 위해 "무담체 모드"와 "담체 충진 모드"의 두 가지 모드에서 추적자 실험을 수행하였다. 각 모드에서 동일한 실험조건으로 실험을 수행하여 수리학적 수치들이 유도되었고 실제 반응기의 수리학적 특성파악에 필요한 데이터를 얻어 해석하였다. 두 가지모드에서의 수리학적 해석을 위해 담체는 비 반응성이고 분산계수가 상수라는 가정으로 비 반응성 추적자의 일차원-비 정상상태 농도분포의 분산모델을 사용하였다. 실험결과 담체는 반응기 내부에서의 혼합효과를 크게 증가시켰다. 담체를 충진하지 않은 경우 충진한 경우에 비해 분산계수는 최소 1자리 수 이상 작게 나타났다. 담체가 없는 경우 실험영역(Pe⦤0.83cm/s)에서 이류흐름이 지배적 흐름이었고 반응기의 흐름형태는 마개흐름형 반응기(PFR)에 근접하였다. 이 때 분산계수는 0.83cm/s까지 겉보기유속에 비례적으로 증가하였다. 그러나 담체가 충진된 경우, 흐름형태는 마개흐름형 반응기 (PFR)과 완전혼합형 반응기(CMFR)사이에 있음을 나타내었으며 분산계수는 겉보기유속이 0.41cm/s에서 거의 최대치에 도달한 후 0.82cm/s까지 유사한 수치를 나타내었다. 본 실험조건에서 분산계수는 액체 레이놀즈수(Re) 또는 입자 레이놀즈수(Rep)에 비례하였다.

Keywords

Acknowledgement

Supported by : 인하공업전문대학

References

  1. B. E. Rittmann, "Comparative performance of biofilm reactor types. Biotech", Bioeng., vol.24, no. 6, pp. 1342-1370, 1982. DOI: https://doi.org/10.1002/bit.260240609
  2. V. Saravanan, T. R. Sreekrishnan, "Modelling anaerobic biofilm reactors-a review", J. Environ. Managem. vol. 81, no. 1, pp. 1-18, 2006. DOI: https://doi.org/10.1016/j.jenvman.2005.10.002
  3. J. P. Bassin, M. Dezotti. Moving bed biofilm reactor (MBBR). Advanced Biological. Processes for Wastewater Treatment. Springer Nature(e book). pp. 37-74.
  4. T. D. Reynolds, P. A. Richards, Unit operations and processes in environmental engineering (2nd Eds), PWS Publishing Co. MA USA, 1996.
  5. M. Denac, A. Miguel, I. J. Dunn, "Modeling dynamic experiments on the anaerobic degradation of molasses wastewater", Biotech. Bioeng., vol. 31, no. 1, pp. 1-10, 1988. DOI: https://doi.org/10.1002/bit.260310102
  6. P. Buffiere, J. P. Steyer, C. Fonade, R. Moletta, "Comprehensive modeling of methanogenic biofilms in fluidized bed systems - mass transfer limitations and multsubstrate aspects", Biotechnol. Bioeng., vol. 48, no. 6, pp.725-236, 1995. DOI: https://doi.org/10.1002/bit.260480622
  7. M. Seifi, M. H. Fazaelipoor, "Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor", Applied Mathematical. Modelling. vol.36, no. 11, pp. 5603-5613, 2012. DOI: https://doi.org/10.1016/j.apm.2012.01.004
  8. S. C. Chapra, Surface water-qualityf modeling, McGRAW-Hill Companies Inc., NY, 1997.
  9. S. D. Kim, "Heat Transfer between Gas Fluidized Bed and Vertical Tubes", The Korean journal of chemical engineering, Vol. 17, no. 2, pp. 85-99, 1979.
  10. H. M. El-Baroudi, D. R. Fuller, "Tracer dispersion of high rate settling tanks", J. ASCE, vol. 99, no. 3, pp.347-368, 1973.
  11. O. Levenspiel, W. K.Smith, "Notes on the diffusion-type model for the longitudinal mixing of fluids in flow". Chem. Eng. Sci., vol.6, no. 4, pp. 227-233, 1957. DOI: https://doi.org/10.1016/0009-2509(57)85021-0
  12. M. Asif, N. Kolagerakis, L. A. Behie, "Onthe constancy of axial dispersion coefficients in liquid fluidized beds", Chem. Eng. J., vol. 49, no. 1, pp. 17-26, 1992. DOI: https://doi.org/10.1016/0300-9467(92)85020-A
  13. M. Turan, I. Ozturk, "Longitudinal dispersion and biomass hold-up of anaerobic fluidized bed reactors", Wat. Sci. Tech., vol. 34, no. 5-6, pp. 461-468, 1996. DOI: https://doi.org/10.1016/0273-1223(96)00679-8
  14. R. R. Sharp, A.B. Cunningham, J. Komlos, J. Billmayer, "Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects", Wat. Sci.Tech., vol. 39, no. 7, pp. 195-201, 1999. DOI: https://doi.org/10.1016/S0273-1223(99)00168-7
  15. C. Nicolella, S. Chiarle, R. Di Felice, M. Rovatti, "Mechanisms of biofilm detachment in fluidized bed reactors", Wat. Sci. Tech., vol. 36, no. 1, pp. 229-235, 1997. DOI: https://doi.org/10.1016/S0273-1223(97)00329-6
  16. C. Nicolella, R. Di Felice, M. Rovatti, "An experimental model of biofilm detachment in liquid fluidized bedbiological reactors", Biotechnol. Bioeng. vol.51, no. 6, pp. 713-719, 1996. DOI: https://doi.org/10.1002/(SICI)1097-0290(19960920)51:6<713::AID-BIT10>3.0.CO;2-E