DOI QR코드

DOI QR Code

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.

  • Han, Mi-Ae (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University) ;
  • Hong, Seong-Joo (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University) ;
  • Kim, Z-Hun (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hookeun (Institute of Pharmaceutical Research, College of Pharmacy, Gachon University) ;
  • Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University) ;
  • Lee, Choul-Gyun (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University)
  • Received : 2017.02.24
  • Accepted : 2017.11.27
  • Published : 2018.02.28

Abstract

Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.

Keywords

References

  1. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  2. Prochazkova G, Branyikova I, Zachleder V, Branyik T. 2014. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26: 1359-1377. https://doi.org/10.1007/s10811-013-0154-9
  3. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  4. Ho SH, Chen CY, Chang JS. 2012. Effect of light intensity and nitrogen starvation on $CO_2$ fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113: 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
  5. Jiang Y, Yoshida T, Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol. Biochem. 54: 70-77. https://doi.org/10.1016/j.plaphy.2012.02.012
  6. Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010
  7. Xin L, Hu HY, Ke G, Sun YX. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101: 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  8. Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the US department of energy's aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, USA.
  9. Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour. Technol. 131: 188-194. https://doi.org/10.1016/j.biortech.2012.12.143
  10. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. 2013. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol. 17: 489-495.
  11. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430-436. https://doi.org/10.1016/j.copbio.2008.07.008
  12. Sirikhachornkit A, Vuttipongchaikij S, Suttangkakul A, Yokthongwattana K, Juntawong P, Pokethitiyook P, et al. 2016. Increasing the triacylglycerol content in Dunaliella tertiolecta through isolation of starch-deficient mutants. J. Microbiol. Biotechnol. 26: 854-866. https://doi.org/10.4014/jmb.1510.10022
  13. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10. https://doi.org/10.1016/j.bej.2013.03.006
  14. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010. Chlamydomonas starchless mutant defective in ADPglucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12: 387-391.
  15. Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, et al. 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5: 3831. https://doi.org/10.1038/ncomms4831
  16. Iglesias AA, Charng Y, Ball S, Preiss J. 1994. Characterization of the kinetic, regulatory, and structural properties of ADPglucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol. 104: 1287-1294. https://doi.org/10.1104/pp.104.4.1287
  17. Klein U. 1987. Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol. 85: 892-897. https://doi.org/10.1104/pp.85.4.892
  18. Kuchitsu K, Tsuzuki M, Miyachi S. 1988. Changes of starch localization within the chloroplast induced by changes in $CO_2$ concentration during growth of Chlamydomonas reinhardtii: independent regulation of pyrenoid starch and stroma starch. Plant Cell Physiol. 29: 1269-1278.
  19. Roeben A, Plitzko JM, Korner R, Bottcher UM, Siegers K, Hayer-Hartl M, et al. 2006. Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J. Mol. Biol. 364: 551-560. https://doi.org/10.1016/j.jmb.2006.08.079
  20. Kleczkowski LA, Randall DD, Blevins DG. 1987. Inhibition of spinach leaf NADPH (NADH)-glyoxylate reductase by acetohydroxamate, aminooxyacetate, and glycidate. Plant Physiol. 84: 619-623.
  21. Kim ZH, Park H, Lee CG. 2016. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 26: 1098-1102. https://doi.org/10.4014/jmb.1601.01031
  22. Lee HS, Kim ZH, Park H, Lee CG. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess. Biosyst. Eng. 39: 815-823. https://doi.org/10.1007/s00449-016-1561-5
  23. Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773.
  24. Lee HS, Seo MW, Kim ZH, Lee CG. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447-452. https://doi.org/10.1016/j.enzmictec.2005.11.038
  25. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
  26. Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495-1503. https://doi.org/10.1007/s00253-012-3940-4
  27. Gonen-Zurgil Y, Carmeli-Schwartz Y, Sukenik A. 1996. Selective effect of the herbicide DCMU on unicellular algae - a potential tool to maintain monoalgal mass culture of Nannochloropsis. J. Appl. Phycol. 8: 415-419. https://doi.org/10.1007/BF02178586
  28. Brearley CA, Hanke DE. 1993. Pathway of synthesis of 3,4-and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza. L. Biochem. J. 290: 145-150. https://doi.org/10.1042/bj2900145
  29. Villarejo A, Martinez F, Ramazanov Z. 1997. Effect of aminooxyacetate, an inhibitor blocking the glycolate pathway, on the induction of a $CO_2$-concentrating mechanism and low-$CO_2$-inducible polypeptides in Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 32: 141-145. https://doi.org/10.1080/09670269710001737069
  30. Thompson GA. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302: 17-45. https://doi.org/10.1016/0005-2760(96)00045-8
  31. Zhan J, Hu H. 2016. Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 26: 1290-1302. https://doi.org/10.4014/jmb.1512.12074
  32. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, et al. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75: 50-59. https://doi.org/10.1016/j.phytochem.2011.12.007
  33. Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, et al. 2012. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 114: 567-572.
  34. Schiff JA, Zeldin MH, Rubman J. 1967. Chlorophyll formation and photosynthetic competence in Euglena during lightinduced chloroplast development in the presence of 3,(3,4-dichlorophenyl) 1,1-dimethyl urea (DCMU). Plant Physiol. 42: 1716-1725. https://doi.org/10.1104/pp.42.12.1716
  35. Wang ST, Pan Y-Y, Liu CC, Chuang LT, Chen CNN. 2011. Characterization of a green microalga UTEX 2219-4: effects of photosynthesis and osmotic stress on oil body formation. Bot. Stud. 52: 305-312.
  36. Buchanan BB. 1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341-374. https://doi.org/10.1146/annurev.pp.31.060180.002013
  37. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8: 1856-1868. https://doi.org/10.1128/EC.00272-09
  38. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J. 2012. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol. Biofuels 5: 1. https://doi.org/10.1186/1754-6834-5-1
  39. Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. 2016. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol. J. 14: 1649-1660. https://doi.org/10.1111/pbi.12523
  40. Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, et al. 2005. Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46: 1366-1376. https://doi.org/10.1093/pcp/pci148
  41. Liang MH, Jiang JG. 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395-408. https://doi.org/10.1016/j.plipres.2013.05.002
  42. Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727. https://doi.org/10.1525/bio.2010.60.9.9
  43. Lloyd ND, Canvin DT, Culver DA. 1977. Photosynthesis and photorespiration in algae. Plant Physiol. 59: 936-940. https://doi.org/10.1104/pp.59.5.936
  44. Servaites JC, Ogren WL. 1977. Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol. 60: 461-466. https://doi.org/10.1104/pp.60.4.461
  45. Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, et al. 2004. Crystal structures of unbound and aminooxyacetatebound Escherichia coli ${\gamma}$-aminobutyrate aminotransferase. Biochemistry 43: 10896-10905. https://doi.org/10.1021/bi049218e
  46. Bloom AJ. 2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123: 117-128. https://doi.org/10.1007/s11120-014-0056-y
  47. Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ. 1988. Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can. J. Bot. 66: 2083-2097. https://doi.org/10.1139/b88-286

Cited by

  1. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1128-6
  2. Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1910.10046
  3. Enhancing Microalgal Biomass Productivity in Floating Photobioreactors with Semi-Permeable Membranes Grafted with 4-Hydroxyphenethyl Bromide vol.28, pp.2, 2018, https://doi.org/10.1007/s13233-020-8023-2
  4. Effect of trace metals on growth performance and accumulation of lipids, proteins, and carbohydrates on the green microalga Scenedesmus obliquus vol.28, pp.4, 2020, https://doi.org/10.1007/s10499-020-00533-0
  5. The carbon partitioning of glucose and DIC in mixotrophic, heterotrophic and photoautotrophic cultures of Tetraselmis suecica vol.43, pp.3, 2021, https://doi.org/10.1007/s10529-020-03073-y
  6. Recent developments in microalgal genome editing for enhancing lipid accumulation and biofuel recovery vol.150, pp.None, 2021, https://doi.org/10.1016/j.biombioe.2021.106093