References
- Kim S, Kim J, So J, Rhee I, Chung S, Lee K. 2004. Changes in chemical composition and biological activities of oriental crude drugs by food processing techniques (I) - changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Korean J. Pharmacogn. 35: 309-314.
- Yang EJ, Kim SI, Park SY, Bang HY, Jeong JH, So JH, et al. 2012. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content. Food Chem. Toxicol. 50: 2042-2048. https://doi.org/10.1016/j.fct.2012.03.065
- Yang EJ, Park GH, Song KS. 2013. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 39: 114-123.
- Pan ZH, Jiao RH, Lu YH, Tan RX. 2015. Enhancement of dalesconols A and B production via upregulation of laccase activity by medium optimization and inducer supplementation in submerged fermentation of Daldinia eschscholzii. Bioresour. Technol. 192: 346-353. https://doi.org/10.1016/j.biortech.2015.05.039
- Wang J, Feng J, Jia W, Chang S, Li S, Li Y. 2015. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol. Biofuels 8: 145.
- Kurniawati S, Nicell JA. 2008. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol. 99: 7825-7834. https://doi.org/10.1016/j.biortech.2008.01.084
- Hakulinen N, Rouvinen J. 2015. Three-dimensional structures of laccases. Cell. Mol. Life Sci. 72: 857-868. https://doi.org/10.1007/s00018-014-1827-5
- Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cell. Mol. Life Sci. 67: 369-385. https://doi.org/10.1007/s00018-009-0169-1
- Jones SM, Solomon EI. 2015. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 72: 869-883. https://doi.org/10.1007/s00018-014-1826-6
- Mot AC, Silaghi-Dumitrescu R. 2012. Laccases: complex architectures for one-electron oxidations. Biochemistry 77: 1395-1407.
-
Wherland S, Farver O, Pecht I. 2014. Multicopper oxidases: intramolecular electron transfer and
$O_2$ reduction. J. Biol. Inorg. Chem. 19: 541-554. - Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. 2015. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33: 13-24. https://doi.org/10.1016/j.biotechadv.2014.12.008
- Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60: 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
- Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol. 48: 195-208. https://doi.org/10.1016/j.enzmictec.2010.11.007
- Kudanga T, Le Roes-Hill M. 2014. Laccase applications in biofuels production: current status and future prospects. Appl. Microbiol. Biotechnol. 98: 6525-6542. https://doi.org/10.1007/s00253-014-5810-8
- Mikolasch A, Schauer F. 2009. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol. 82: 605-624.
- Greenwood SM, Connolly CN. 2007. Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53: 891-898. https://doi.org/10.1016/j.neuropharm.2007.10.003
- Maher P, Schubert D. 2000. Signaling by reactive oxygen species in the nervous system. Cell. Mol. Life Sci. 57: 1287-1305. https://doi.org/10.1007/PL00000766
- Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. 2011. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 18: 282-292. https://doi.org/10.1038/cdd.2010.92
- Li HQ, Liu QZ, Liu ZL, Du SS, Deng ZW. 2013. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 18: 4170-4180. https://doi.org/10.3390/molecules18044170
- Bortolomeazzi R, Verardo G, Liessi A, Callea A. 2010. Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem. 118: 256-265. https://doi.org/10.1016/j.foodchem.2009.04.115
- Yang EJ, Song KS. 2015. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamateinduced mouse hippocampal neuronal HT22 cell death. Food Funct. 6: 3678-3686.
- Yang EJ, Song KS. 2014. Andrographolide, a major component of Andrographis paniculata leaves, has the neuroprotective effects on glutamate-induced HT22 cell death. J. Funct. Food 9: 162-172. https://doi.org/10.1016/j.jff.2014.04.023
- Oboh G, Akinbola IA, Ademosun AO, Sanni DM, Odubanjo OV, Olasehinde TA, et al. 2015. Essential oil from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro. J. Oleo Sci. 64: 775-782. https://doi.org/10.5650/jos.ess14274
- Muruganandan S, Srinivasan K, Chandra S, Tandan SK, Lal J, Raviprakash V. 2001. Anti-inflammatory activity of Syzygium cumini bark. Fitoterapia 72: 369-375. https://doi.org/10.1016/S0367-326X(00)00325-7
- Milind P, Deepa K. 2011. Clove: a champion spice. Int. J. Res. Ayurveda Pharm. 2: 47-54.
- Arung ET, Matsubara E, Kusuma IW, Sukaton E, Shimizu K, Kondo R. 2011. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 82: 198-202. https://doi.org/10.1016/j.fitote.2010.09.008
- Kim EH, Kim HK, Ahn YJ. 2003. Acaricidal activity of clove bud oil compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 51: 885-889. https://doi.org/10.1021/jf0208278
- Kuroda M, Mimaki Y, Ohtomo T, Yamada J, Nishiyama T, Mae T, et al. 2012. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J. Nat. Med. 66: 394-399. https://doi.org/10.1007/s11418-011-0593-z
- do Amaral JF, Silva MI, de Aquino Neto MR, Moura BA, de Carvalho AM, Vasconcelos PF, et al. 2013. Antidepressantlike effect of bis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system. Fundam. Clin. Pharmacol. 27: 471-482. https://doi.org/10.1111/j.1472-8206.2012.01058.x
- Hosny M, Rosazza JP. 2002. Novel oxidations of (+)-catechin by horseradish peroxidase and laccase. J. Agric. Food Chem. 50: 5539-5545.
- Franck T, Mouithys-Mickalad A, Robert T, Ghitti G, Deby-Dupont G, Neven P, et al. 2013. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study. Chem. Biol. Interact. 206: 194-203. https://doi.org/10.1016/j.cbi.2013.09.009
Cited by
- Waste residues from Opuntia ficus indica for peroxidase-mediated preparation of phenolic dimeric compounds vol.20, pp.None, 2018, https://doi.org/10.1016/j.btre.2018.e00291