DOI QR코드

DOI QR Code

Laccase Fermentation of Clove Extract Increases Content of Dehydrodieugenol, Which Has Neuroprotective Activity against Glutamate Toxicity in HT22 Cells

  • Lee, Han-Saem (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Yang, Eun-Ju (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Lee, Taeho (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Song, Kyung-Sik (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • Received : 2017.09.22
  • Accepted : 2017.11.22
  • Published : 2018.02.28

Abstract

Enzyme fermentation is a type of food processing technique generally used to improve the biological activities of food and herbal medicines. In this study, a Syzygii Flos (clove) extract was fermented using laccase derived from Trametes versicolor (LTV). The fermented clove extract showed greater neuroprotective effects against glutamate toxicity on HT22 than the non-fermented extract did. HPLC analysis revealed that the eugenol (1) and dehydrodieugenol (2) contents had decreased and increased, respectively, after fermentation. The content of 2 peaked at 1 h after fermentation to $103.50{\pm}8.20mg/g_{ex}$ (not detected at zero time), while that of 1 decreased to $79.54{\pm}4.77mg/g_{ex}$ ($185.41{\pm}10.16mg/g_{ex}$ at zero time). Compound 2 demonstrated promising HT22 neuroprotective properties with inhibition of $Ca^{2+}$ influx, the overproduction of intracellular reactive oxygen species, and lipid peroxidation. In addition, LTV showed the best fermentation efficacy compared with laccases derived from Pleurotus ostreatus and Rhus vernicifera.

Keywords

References

  1. Kim S, Kim J, So J, Rhee I, Chung S, Lee K. 2004. Changes in chemical composition and biological activities of oriental crude drugs by food processing techniques (I) - changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Korean J. Pharmacogn. 35: 309-314.
  2. Yang EJ, Kim SI, Park SY, Bang HY, Jeong JH, So JH, et al. 2012. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content. Food Chem. Toxicol. 50: 2042-2048. https://doi.org/10.1016/j.fct.2012.03.065
  3. Yang EJ, Park GH, Song KS. 2013. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 39: 114-123.
  4. Pan ZH, Jiao RH, Lu YH, Tan RX. 2015. Enhancement of dalesconols A and B production via upregulation of laccase activity by medium optimization and inducer supplementation in submerged fermentation of Daldinia eschscholzii. Bioresour. Technol. 192: 346-353. https://doi.org/10.1016/j.biortech.2015.05.039
  5. Wang J, Feng J, Jia W, Chang S, Li S, Li Y. 2015. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol. Biofuels 8: 145.
  6. Kurniawati S, Nicell JA. 2008. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol. 99: 7825-7834. https://doi.org/10.1016/j.biortech.2008.01.084
  7. Hakulinen N, Rouvinen J. 2015. Three-dimensional structures of laccases. Cell. Mol. Life Sci. 72: 857-868. https://doi.org/10.1007/s00018-014-1827-5
  8. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cell. Mol. Life Sci. 67: 369-385. https://doi.org/10.1007/s00018-009-0169-1
  9. Jones SM, Solomon EI. 2015. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 72: 869-883. https://doi.org/10.1007/s00018-014-1826-6
  10. Mot AC, Silaghi-Dumitrescu R. 2012. Laccases: complex architectures for one-electron oxidations. Biochemistry 77: 1395-1407.
  11. Wherland S, Farver O, Pecht I. 2014. Multicopper oxidases: intramolecular electron transfer and $O_2$ reduction. J. Biol. Inorg. Chem. 19: 541-554.
  12. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. 2015. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33: 13-24. https://doi.org/10.1016/j.biotechadv.2014.12.008
  13. Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60: 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
  14. Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol. 48: 195-208. https://doi.org/10.1016/j.enzmictec.2010.11.007
  15. Kudanga T, Le Roes-Hill M. 2014. Laccase applications in biofuels production: current status and future prospects. Appl. Microbiol. Biotechnol. 98: 6525-6542. https://doi.org/10.1007/s00253-014-5810-8
  16. Mikolasch A, Schauer F. 2009. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol. 82: 605-624.
  17. Greenwood SM, Connolly CN. 2007. Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53: 891-898. https://doi.org/10.1016/j.neuropharm.2007.10.003
  18. Maher P, Schubert D. 2000. Signaling by reactive oxygen species in the nervous system. Cell. Mol. Life Sci. 57: 1287-1305. https://doi.org/10.1007/PL00000766
  19. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. 2011. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 18: 282-292. https://doi.org/10.1038/cdd.2010.92
  20. Li HQ, Liu QZ, Liu ZL, Du SS, Deng ZW. 2013. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 18: 4170-4180. https://doi.org/10.3390/molecules18044170
  21. Bortolomeazzi R, Verardo G, Liessi A, Callea A. 2010. Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem. 118: 256-265. https://doi.org/10.1016/j.foodchem.2009.04.115
  22. Yang EJ, Song KS. 2015. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamateinduced mouse hippocampal neuronal HT22 cell death. Food Funct. 6: 3678-3686.
  23. Yang EJ, Song KS. 2014. Andrographolide, a major component of Andrographis paniculata leaves, has the neuroprotective effects on glutamate-induced HT22 cell death. J. Funct. Food 9: 162-172. https://doi.org/10.1016/j.jff.2014.04.023
  24. Oboh G, Akinbola IA, Ademosun AO, Sanni DM, Odubanjo OV, Olasehinde TA, et al. 2015. Essential oil from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro. J. Oleo Sci. 64: 775-782. https://doi.org/10.5650/jos.ess14274
  25. Muruganandan S, Srinivasan K, Chandra S, Tandan SK, Lal J, Raviprakash V. 2001. Anti-inflammatory activity of Syzygium cumini bark. Fitoterapia 72: 369-375. https://doi.org/10.1016/S0367-326X(00)00325-7
  26. Milind P, Deepa K. 2011. Clove: a champion spice. Int. J. Res. Ayurveda Pharm. 2: 47-54.
  27. Arung ET, Matsubara E, Kusuma IW, Sukaton E, Shimizu K, Kondo R. 2011. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 82: 198-202. https://doi.org/10.1016/j.fitote.2010.09.008
  28. Kim EH, Kim HK, Ahn YJ. 2003. Acaricidal activity of clove bud oil compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 51: 885-889. https://doi.org/10.1021/jf0208278
  29. Kuroda M, Mimaki Y, Ohtomo T, Yamada J, Nishiyama T, Mae T, et al. 2012. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J. Nat. Med. 66: 394-399. https://doi.org/10.1007/s11418-011-0593-z
  30. do Amaral JF, Silva MI, de Aquino Neto MR, Moura BA, de Carvalho AM, Vasconcelos PF, et al. 2013. Antidepressantlike effect of bis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system. Fundam. Clin. Pharmacol. 27: 471-482. https://doi.org/10.1111/j.1472-8206.2012.01058.x
  31. Hosny M, Rosazza JP. 2002. Novel oxidations of (+)-catechin by horseradish peroxidase and laccase. J. Agric. Food Chem. 50: 5539-5545.
  32. Franck T, Mouithys-Mickalad A, Robert T, Ghitti G, Deby-Dupont G, Neven P, et al. 2013. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study. Chem. Biol. Interact. 206: 194-203. https://doi.org/10.1016/j.cbi.2013.09.009

Cited by

  1. Waste residues from Opuntia ficus indica for peroxidase-mediated preparation of phenolic dimeric compounds vol.20, pp.None, 2018, https://doi.org/10.1016/j.btre.2018.e00291