DOI QR코드

DOI QR Code

Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345

  • Singh, Digar (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2017.11.03
  • Accepted : 2017.11.08
  • Published : 2018.02.28

Abstract

Volatile organic compounds (VOCs) are increasingly been recognized as the chemical mediators of mold interactions, shaping their community dynamics, growth, and metabolism. Herein, we selectively examined the time-correlated (0 D-11 D, where D = incubation days) effects of intraspecies VOC-mediated interactions (VMI) on Aspergillus oryzae KCCM 60345 (S1), following co-cultivation with partner strain A. oryzae KACC 44967 (S2), in a specially designed twin plate assembly. The comparative evaluation of $S1_{VMI}$ (S1 subjected to VMI with S2) and its control ($S1_{Con}$) showed a notable disparity in their radial growth ($S1_{VMI}$ < $S1_{Con}$) at 5 D, protease activity ($S1_{VMI}$ > $S1_{Con}$) at 3-5 D, amylase activity ($S1_{VMI}$ < $S1_{Con}$) at 3-5 D, and antioxidant levels ($S1_{VMI}$ > $S1_{Con}$) at 3 D. Furthermore, we observed a distinct clustering pattern for gas chromatography-time of flight-mass spectrometry datasets from 5 D extracts of $S1_{VMI}$ and $S1_{Con}$ in principle component analysis (PC1: 30.85%; PC2: 10.31%) and partial least squares discriminant analysis (PLS-DA) (PLS1: 30.77; PLS2: 10.15%). Overall, 43 significantly discriminant metabolites were determined for engendering the metabolic variance based on the PLS-DA model (VIP > 0.7, p < 0.05). In general, a marked disparity in the relative abundance of amino acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, organic acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, and kojic acid ($S1_{VMI}$ < $S1_{Con}$) at 5-7 D were observed. Examining the headspace VOCs shared between S1 and S2 in the twin plate for 5 D incubated samples, we observed the relatively higher abundance of C-8 VOCs (1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol, 3-octanone, 1-octen-3-ol acetate) having known semiochemical functions. The present study potentially illuminates the effects of VMI on commercially important A. oryzae's growth and biochemical phenotypes with subtle details of altered metabolomes.

Keywords

References

  1. Ponnusamy K, Lee S, Lee CH. 2013. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77: 683-690. https://doi.org/10.1271/bbb.120665
  2. Wicklow DT, Cesaria EM, Quee LY. 2007. Diversity of Aspergillus oryzae genotypes (RFLP) isolated from traditional soy sauce production within Malaysia and Southeast Asia. Mycoscience 48: 373-380.
  3. Bal J, Yun SH, Song HY, Yeo SH, Kim JH, Kim JM, et al. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52: 1025-1029. https://doi.org/10.1007/s12275-014-4620-0
  4. Kim HR, Lee AR, Kim JH. 2017. Characteristics of Korean alcoholic beverages produced by using rice nuruks containing Aspergillus oryzae N159-1. Mycobiology 45: 119-122. https://doi.org/10.5941/MYCO.2017.45.2.119
  5. Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, et al. 2016. Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6: 1495.
  6. Fiers M, Lognay G, Fauconnier ML, Jijakli MH. 2013. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 8: e66805. https://doi.org/10.1371/journal.pone.0066805
  7. Lee S, Yap M, Behringer G, Hung R, Bennett JW. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3: 7. https://doi.org/10.1186/s40694-016-0025-7
  8. Jones SE, Elliot MA. 2017. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 25: 522-531. https://doi.org/10.1016/j.tim.2017.02.001
  9. Schmidt R, Jager V, Zuhlke D, Wolff C, Bernhardt J, Cankar K, et al. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 13: 862.
  10. Briard B, Heddergott C, Latge J. 2016. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio 7: 00219-16.
  11. Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J. 2005. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol. Ecol. 54: 67-75. https://doi.org/10.1016/j.femsec.2005.02.013
  12. Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K. 2014. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ 2: e395. https://doi.org/10.7717/peerj.395
  13. Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP. 2005. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151: 1809-1821. https://doi.org/10.1099/mic.0.27880-0
  14. Kim AJ, Choi JN, Kim J, Kim HY, Park SB, Yeo SH, et al. 2012. Metabolite profiling and bioactivity of rice koji fermented by Aspergillus strains. J. Microbiol. Biotechnol. 22: 100-106. https://doi.org/10.4014/jmb.1106.06033
  15. Kim AJ, Choi JN, Kim J, Yeo SH, Choi JH, Lee CH. 2012. Metabolomics-based optimal koji fermentation for tyrosinase inhibition supplemented with Astragalus radix. Biosci. Biotechnol. Biochem. 76: 863-869. https://doi.org/10.1271/bbb.110171
  16. Wickerman LJ. 1951. Taxonomy of Yeasts. US Department of Agriculture Technical Bulletin No. 1029. US Department of Agriculture, Washington, DC.
  17. Chancharoonpong C, Hsieh PC, Sheu SC. 2012. Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE Procedia 2: 57-61. https://doi.org/10.1016/j.apcbee.2012.06.011
  18. Frisvad JC, Petersen LM, Lyhne EK, Larsen TO. 2014. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. PLoS One 9: e94857.
  19. Sun D, She J, Gower JL, Stokes CE, Windham GL, Baird RE, et al. 2016. Effects of growth parameters on the analysis of Aspergillus flavus volatile metabolites. Separations 3: 13. https://doi.org/10.3390/separations3020013
  20. Bernfeld P. 1955. Amylases, ${\alpha}$ and ${\beta}$. Methods Enzymol. 1: 149-158.
  21. Kum SJ, Yang SO, Lee SM, Chang PS, Choi YH, Lee JJ. 2015. Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). J. Agric. Food Chem. 63: 1401-1418. https://doi.org/10.1021/jf5056002
  22. Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, et al. 2005. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305. https://doi.org/10.1021/tx050058x
  23. Skogerson K, Wohlgemuth G, Barupal DK, Fiehn O. 2011. The volatile compound BinBase mass spectral database. BMC Bioinformatics 12: 321. https://doi.org/10.1186/1471-2105-12-321
  24. Bruce A, Verrall S, Hackett CA, Wheatley RE. 2004, Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58: 193-198.
  25. Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J. 1997 Ammonia mediates communication between yeast colonies. Nature 390: 532-536. https://doi.org/10.1038/37398
  26. Garbeva P, Hordijk C, Gerards S, de Boer W. 2014. Volatilemediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5: 289.
  27. Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW. 2015. Effects of three volatile oxylipins on colony development in two species of fungi and on Drosophila larval metamorphosis. Curr. Microbiol. 71: 347.
  28. Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535. https://doi.org/10.1128/EC.3.2.527-535.2004
  29. Oda K, Kobayashi A, Ohashi S, Sano M. 2011. Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci. Biotechnol. Biochem. 75: 1832-1834. https://doi.org/10.1271/bbb.110235
  30. Combet E, Henderson J, Eastwood DC, Burton KS. 2006. Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47: 317-326. https://doi.org/10.1007/S10267-006-0318-4
  31. Erika HG, Garzia A, Cordobes S, Espeso EA, Ugalde U. 2011. 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol. 115: 393-400. https://doi.org/10.1016/j.funbio.2011.02.005
  32. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964. https://doi.org/10.1016/j.soilbio.2004.10.021

Cited by

  1. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00628
  2. Comparison of volatile profiles in Fagopyrum esculentum (buckwheat) soksungjang prepared with different starter cultures during fermentation vol.28, pp.4, 2019, https://doi.org/10.1007/s10068-018-00549-6
  3. Critical thresholds of 1-Octen-3-ol shape inter-species Aspergillus interactions modulating the growth and secondary metabolism vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-68096-x
  4. Procoagulant and Antimicrobial Effects of Chitosan in Wound Healing vol.22, pp.13, 2018, https://doi.org/10.3390/ijms22137067