DOI QR코드

DOI QR Code

Numerical modelling of soil-foundation interaction by a new non-linear macro-element

  • Khebizi, Mourad (Department of Civil Engineering, Mentouri University of Constantine) ;
  • Guenfoud, Hamza (Civil Engineering and Hydraulic Laboratory, University of Guelma) ;
  • Guenfoud, Mohamed (Civil Engineering and Hydraulic Laboratory, University of Guelma)
  • Received : 2016.12.08
  • Accepted : 2017.08.23
  • Published : 2018.03.20

Abstract

This paper focuses on the development of a new non-linear macro-element for the modelling of soil-foundation interaction. Material and geometrical nonlinearities (soil yielding and foundation uplift respectively) are taken into account in the present macro-element to examine the response of shallow foundations under monotonic and cyclic loads. Several applications of soil-foundation systems are studied. The results obtained from these applications are in very favourable agreement with those obtained through other numerical models in the literature.

Keywords

References

  1. Abbo, A.J. and Sloan, S.W. (2000), SNAC, User Manual, Version 2.0., Department of civil, Surveying and Environmental Engineering, University of Newcastle, Callaghan, Australia.
  2. Allotey, N. and El Naggar, M.H. (2003), "Analytical momentrotation curves for rigid foundations based on a Winkler model", Soil Dyn. Earthq. Eng., 23(5), 367-381. https://doi.org/10.1016/S0267-7261(03)00034-4
  3. Allotey, N. and El Naggar, M.H. (2008), "An investigation into the Winkler modeling of the cyclic response of rigid footings", Soil Dyn. Earthq. Eng., 28(1), 44-57. https://doi.org/10.1016/j.soildyn.2007.04.003
  4. American Society of Civil Engineers (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356), Federal Emergency Management Agency.
  5. Anastasopoulos, I. and Kontoroupi, T. (2014), "Simplified approximate method for analysis of rocking systems accounting for soil inelasticity and foundation uplifting", Soil Dyn. Earthq. Eng., 56, 28-43. https://doi.org/10.1016/j.soildyn.2013.10.001
  6. Antoine, L.B. (2009), "Effets du basculement des fondations superficielles sur le comportement sismique des murs de refend en beton arme", Ph.D. Dissertation, Universite de Montreal, Montreal, Canada.
  7. Bhaumik, L. and Raychowdhury, P. (2013), "Seismic response analysis of a nuclear reactor structure consideringnonlinear soilstructure interaction", Nucl. Eng. Des., 265, 1078-1090. https://doi.org/10.1016/j.nucengdes.2013.09.037
  8. Caquot, A. and Kerisel, J. (1966), Traite de Mecanique des Sols, Gautiers-Villars, France.
  9. Charalampakis, A.E. and Koumousis, V.K. (2009), "A Bouc-Wen model compatible with plasticity postulates", J. Sound Vib., 322(4-5), 954-968. https://doi.org/10.1016/j.jsv.2008.11.017
  10. Chatzigogos, C.T. (2007), "Comportement sismique des fondations superficielles: Vers la prise en compte d'un critere de performance dans la conception", Ph.D. Dissertation, Ecole Polytechnique, Palaiseau, France.
  11. Chatzigogos, C.T., Pecker, A. and Salencon, J. (2009), "Macroelement modeling of shallow foundations", Soil Dyn. Earthq. Eng., 29(5), 765-781. https://doi.org/10.1016/j.soildyn.2008.08.009
  12. Cremer, C., Pecker, A. and Davenne, L. (2001), "Cyclic macroelement for soil-structure interaction: Material and geometrical non-linearites", J. Numer. Anal. Meth. Geomech., 25(13), 1257-1284. https://doi.org/10.1002/nag.175
  13. Cremer, C., Pecker, A. and Davenne, L. (2002), "Modelling of nonlinear dynamic behavior of a shallow strip foundation with macroelement", J. Earthq. Eng., 6(2), 175-211. https://doi.org/10.1080/13632460209350414
  14. Davis, E. and Booker, J. (1973), "The effect of increasing strength with depth on the bearing capacity of clays", Geotechnique, 23(4), 551-563. https://doi.org/10.1680/geot.1973.23.4.551
  15. Dixit, M.S. and Patil, K.A. (2013), "Experimental estimate of $N{\gamma}$ values and corresponding settlements for square footings on finite layer of sand", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.363
  16. Gazetas, G. (1991), "Formulae and charts for impedance functions of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363)
  17. Gazetas, G. (2015), "4th Ishihara lecture: Soil-foundationstructure systems beyond conventional seismic failure thresholds", Soil Dyn. Earthq. Eng., 68, 23-39. https://doi.org/10.1016/j.soildyn.2014.09.012
  18. Gazetas, G., Anastasopoulos, I., Adamidis, O. and Kontoroupi, T.H. (2013), "Nonlinear rocking stiffness of foundations", Soil Dyn. Earthq. Eng., 47, 83-91. https://doi.org/10.1016/j.soildyn.2012.12.011
  19. Gelagoti, F., Kourkoulis, R., Anastasopoulos, I. and Gazetas, G. (2012), "Rocking-isolated frame structures: Margins of safety against toppling collapse andsimplified design approach", Soil Dyn. Earthq. Eng., 32(1), 87-102. https://doi.org/10.1016/j.soildyn.2011.08.008
  20. Harden, C., Hutchinson, T.C., Martin, C.R. and Kutter, B.L. (2005), Numerical Modeling of the Nonlinear Cyclic Response of Shallow Foundations, Pacific Earthquake Engineering Research Center.
  21. Houlsby, G.T., Cassidy, M.J. and Einav, I. (2005), "A generalised Winkler model for the behaviour of shallow foundations", Geotechnique, 55(6), 449-460. https://doi.org/10.1680/geot.2005.55.6.449
  22. Khebizi, M. (2015), "Comportement mecanique d'une semelle superficielle sous l'effet d'un seisme", Ph.D. Dissertation, University of Guelma, Guelma, Algeria.
  23. Khebizi, M., Guenfoud, H. and Guenfoud, M. (2014), "Modelisation des poutres en beton arme par des elements multicouches", Courrier du Savoir, 18, 111-115.
  24. Khebizi, M. and Guenfoud, M. (2015), "Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements", Comput. Concrete, 15(4), 547-562. https://doi.org/10.12989/cac.2015.15.4.547
  25. Loukidis, D., Chakraborty, T. and Salgado, R. (2008), "Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads", Can. Geotech. J., 45(6), 768-787. https://doi.org/10.1139/T08-015
  26. Lu, Y., Marshall, A.M. and Hajirasouliha, I. (2016), "A simplified Nonlinearn Sway-Rocking model for evaluation of seismic response of structures on shallow foundations", Soil Dyn. Earthq. Eng., 81, 14-26. https://doi.org/10.1016/j.soildyn.2015.11.002
  27. Matar, M. and Salencon, J. (1979), "Capacite portante des semelles filantes", Revue Francaise de Geotechnique, 9, 51-76.
  28. Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 343-362. https://doi.org/10.12989/gae.2013.5.4.343
  29. Philipponnat, G. and Hubert, B. (2003), Fondations et Ouvrages en Terre, Eyrolles, Paris, France.
  30. Sieffert, J.G. and Cevaer, F. (1992), Manuel des Functions d'Impedances-Fondations Superficielles, Presses Academiques.
  31. Smith-Pardo, J.P. (2012), "Design aids for simplified nonlinear soil-structure interaction analyses", Eng. Struct., 34, 572-580. https://doi.org/10.1016/j.engstruct.2011.10.005
  32. Smith-Pardo, J.P., Ortiz, A. and Blandon, C.A. (2014), "Biaxial capacity of rigid footings: Simple closed-form equations and experimental results", Eng. Struct., 69, 149-157. https://doi.org/10.1016/j.engstruct.2014.03.007
  33. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Div., 102(EM2), 249-263.