Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Belytschko, T. and Lu, Y.Y. (1994), "Element free Galerkin methods", J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Benz, W. and Asphaug, E. (1995), "Simulations of brittle solids using smoothed particle hydrodynamics", Comput. Phys. Commun., 87(1-2), 253-265. https://doi.org/10.1016/0010-4655(94)00176-3
- Haeri, H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
- Haeri, H., Khaloo, A. and Marji, M.F. (2014), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
- Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arab. J. Geosci., 8(8), 5897-5908. https://doi.org/10.1007/s12517-014-1598-1
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", J. Rock Mech. Min. Sci., 67, 20-28.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Central South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "A coupled numerical-experimental study of the breakage process of brittle substances", Arab. J. Geosci., 8(2), 809-825. https://doi.org/10.1007/s12517-013-1165-1
- Jiao, Y.Y., Zhang, H.Q., Tang, H.M., Zhang, X.L., Adoko, A.C. and Tian, H.N. (2014), "Simulating the process of reservoirimpoundment-induced landslide using the extended DDA method", Eng. Geol., 182, 37-48. https://doi.org/10.1016/j.enggeo.2014.08.016
- Jiao, Y.Y., Zhang, H.Q., Zhang, X.L., Li, H.B. and Jiang, Q.H. (2015), "A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing", J. Numer. Meth. Eng., 39(5), 457-481.
- Jiao, Y.Y., Zhang, X.L. and Li, T.C. (2010), Discontinuous Deformation Analysis for Modeling Jointed Rock Failure Process, Science Press, Beijing, China.
- Lee, H.W. and Jeon, S.W. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
- Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R. and Allahdadi, F.A. (1993), "High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response", J. Comput. Phys., 109(1), 67-75. https://doi.org/10.1006/jcph.1993.1199
- Liu, R.C, Jiang, Y.J. and Li, B. (2016), "Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks", Geosci. J., 20(3), 415-426. https://doi.org/10.1007/s12303-015-0057-7
- Mahmoud, B., Kamran, G., Mohammad, F.M. and Aliakbar, G. (2014), "Numerical simulation of crack propagation in layered formations", Arab. J. Geosci., 7(7), 2729-2737. https://doi.org/10.1007/s12517-013-0885-6
- Mohammadi, M. and Tavakoli, H. (2015), "Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane", Geomech. Eng., 9(1), 115-124. https://doi.org/10.12989/gae.2015.9.1.115
- Niroumand, H., Mehrizi, M.E.M. and Saaly, M. (2016), "Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior", Geomech. Eng., 11(1), 1-39. https://doi.org/10.12989/gae.2016.11.1.001
- Rabczuk, T. and Zi, G. (2007), "A meshfree method based on the local partition of unity for cohesive cracks", Comput. Mech., 39(6), 743-760. https://doi.org/10.1007/s00466-006-0067-4
- Scavia, C. (1999), The Displacement Discontinuity Method for the Analysis of Rock Structures: A Fracture Mechanic, in Fracture of Rock, WIT/Computational Mechanics, Boston, Massachusetts, U.S.A.
- Shi, G.H. (1988), "Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block system", Ph.D. Dissertation, University of California, Berkeley, California, U.S.A.
- Shi, G.H. (1999), "Applications of discontinuous deformation analysis and manifold method", Proceedings of the 3rd International Conference on Analysis of Discontinuous Deformation, Vail, Colorado, U.S.A., June.
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038
- Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", J. Numer. Meth. Eng., 32(11), 1405-1415.
- Wang, P.T., Yang, T.H., Xu T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
- Wang, W. (2014), "The discontinuous deformation analysis considering the block internal coupling effect and plastic anchoring effect", Ph.D. Dissertation, Shandong University, Ji'nan, China.
- Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behavior of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x
- Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004
- Zhang, X.L. (2007), "Study on numerical methods for modeling failure process of semi-continuous jointed rock mass", Ph.D. Dissertation, Chinese Academy of Sciences, Wuhan, China.
- Zhang, X.P. and Louis, N.Y.W. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
- Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2014), "An experimental study of crack coalescence behavior in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47(6), 1961-1986. https://doi.org/10.1007/s00603-013-0511-7
- Zhu, W.S., Chen, Y.J., Li, S.C., Yin, F.Q., Yu, S. and Li, Y. (2014), "Rock failure and its jointed surrounding rocks: A multi-scale grid meshing method for DDARF", Tunn. Undergr. Sp. Tech., 43, 370-376. https://doi.org/10.1016/j.tust.2014.05.015
Cited by
- Highly efficient iterative methods for solving linear equations of three‐dimensional sphere discontinuous deformation analysis vol.44, pp.9, 2018, https://doi.org/10.1002/nag.3062
- Optimal design of shape of a working in cracked rock mass vol.24, pp.3, 2021, https://doi.org/10.12989/gae.2021.24.3.227