DOI QR코드

DOI QR Code

ANALYSIS OF SOME PROJECTION METHODS FOR THE INCOMPRESSIBLE FLUIDS WITH MICROSTRUCTURE

  • Jiang, Yao-Lin (School of Mathematics and Statistics Xi'an Jiaotong University) ;
  • Yang, Yun-Bo (School of Mathematics and Statistics Xi'an Jiaotong University)
  • 투고 : 2017.05.04
  • 심사 : 2017.10.25
  • 발행 : 2018.03.01

초록

In this article, some projection methods (or fractional-step methods) are proposed and analyzed for the micropolar Navier-Stokes equations (MNSE). These methods allow us to decouple the MNSE system into two sub-problems at each timestep, one is the linear and angular velocities system, the other is the pressure system. Both first-order and second-order projection methods are considered. For the classical first-order projection scheme, the stability and error estimates for the linear and angular velocities and the pressure are established rigorously. In addition, a modified first-order projection scheme which leads to some improved error estimates is also proposed and analyzed. We also present the second-order projection method which is unconditionally stable. Ample numerical experiments are performed to confirm the theoretical predictions and demonstrate the efficiency of the methods.

키워드

참고문헌

  1. Ph. Angot, M. Jobelin, and J.-C. Latche, Error analysis of the penalty-projection method for the time dependent Stokes equations, Int. J. Finite Vol. 6 (2009), no. 1, 26 pp.
  2. M. Case, V. Ervin, A. Linke, and L. Rebholz, A connection between Scott-Vogelius elements and grad-div stabilization Taylor-Hood FE approximations of the Navier-Stokes equations, SIAM J. Numer. Anal. 49 (2011), no. 4, 1461-1481. https://doi.org/10.1137/100794250
  3. J. Chen, J. D. Lee, and C. Liang, Constitutive equations of Micropolar electromagnetic fluids, J Non-Newton Fluid. 166 (2011), no. 14, 867-874. https://doi.org/10.1016/j.jnnfm.2011.05.004
  4. A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
  5. J. S. Dahler and L. E. Scriven, Angular momentum of continua, Nature. 192 (1961) 36-37. https://doi.org/10.1038/192036a0
  6. J. S. Dahler and L. E. Scriven, Theory of structured continua. I. General consideration of angular momentum and polarization, Proc. R. Soc. 275 (1963), no. 1363, 504-527. https://doi.org/10.1098/rspa.1963.0183
  7. B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations 249 (2010), no. 1, 200-213. https://doi.org/10.1016/j.jde.2010.03.016
  8. A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer-Verlag, New York, 1999.
  9. A. C. Eringen, Microcontinuum Field Theories. II. Fluent Media, Springer-Verlag, New York, 2001.
  10. G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci. 15 (1977), no. 2, 105-108. https://doi.org/10.1016/0020-7225(77)90025-8
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986.
  12. J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. https://doi.org/10.1016/j.cma.2005.10.010
  13. J. L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003), no. 1, 112-134. https://doi.org/10.1137/S0036142901395400
  14. J. L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys. 192 (2003), no. 1, 262-276. https://doi.org/10.1016/j.jcp.2003.07.009
  15. J. L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comp. 73 (2004), no. 248, 1719-1737. https://doi.org/10.1090/S0025-5718-03-01621-1
  16. F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251-265.
  17. J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353-384. https://doi.org/10.1137/0727022
  18. Y. L. Jiang and Y. B. Yang, Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model, to appear in Comput. Methods Appl. Math. https://doi.org/10.1515/cmam-2017-0021.
  19. M. Jobelin, C. Lapuerta, J. C. Latche, P. Angot, and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comput. Phys. 217 (2006), no. 2, 502-518. https://doi.org/10.1016/j.jcp.2006.01.019
  20. A. Linke, M. Neilan, L. Rebholz, and N. Wilson, A connection between coupled and penalty projection timestepping schemes with FE spacial discretization for the Navier-Stokes equations, preprint (2016), to appear in J. Numer. Math. DOI: 10.1515/jnma-2016-1024.
  21. G. Lukaszewicz, Micropolar Fluids, Modeling and Simulation in Science, Engineering and Technology, Birkhauser Boston, Inc., Boston, MA, 1999.
  22. E. Mallea-Zepeda, E. Ortega-Torres, and E. J. Villamizar-Roa, A boundary control problem for micropolar fluids, J. Optim. Theory Appl. 169 (2016), no. 2, 349-369. https://doi.org/10.1007/s10957-016-0925-y
  23. M. Marion and R. Temam, Navier-Stokes equations: theory and approximation, in Handbook of numerical analysis, Vol. VI, 503-688, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998.
  24. R. H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. I. The Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), no. 3, 1043-1068. https://doi.org/10.1137/040609756
  25. R. H. Nochetto, A. J. Salgado, and I. Tomas, The micropolar Navier-Stokes equations: a priori error analysis, Math. Models Methods Appl. Sci. 24 (2014), no. 7, 1237-1264. https://doi.org/10.1142/S0218202514500018
  26. R. H. Nochetto, A. J. Salgado, and I. Tomas, The equations of ferrohydrodynamics: modeling and numerical methods, Math. Models Methods Appl. Sci. 26 (2016), no. 13, 2393-2449. https://doi.org/10.1142/S0218202516500573
  27. E. Ortega-Torres and M. Rojas-Medar, Optimal error estimate of the penalty finite element method for the micropolar fluid equations, Numer. Funct. Anal. Optim. 29 (2008), no. 5-6, 612-637. https://doi.org/10.1080/01630560802099555
  28. A. J. Salgado, Convergence analysis of fractional time-stepping techniques for incompressible fluids with microstructure, J. Sci. Comput. 64 (2015), no. 1, 216-233. https://doi.org/10.1007/s10915-014-9926-x
  29. J. Shen, On error estimates of projection methods for Navier-Stokes equations: firstorder schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57-77. https://doi.org/10.1137/0729004
  30. J. Shen and X. Yang, Error estimates for finite element approximations of consistent splitting schemes for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 663-676. https://doi.org/10.3934/dcdsb.2007.8.663
  31. R. Stavre, The control of the pressure for a micropolar fluid, Z. Angew. Math. Phys. 53 (2002), no. 6, 912-922. https://doi.org/10.1007/PL00012619
  32. R. Temam, Une methode d'approximation de la solution des equations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115-152.
  33. R. Temam, Navier-Stokes Equations, Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984.
  34. J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 870-891. https://doi.org/10.1137/0907059
  35. Y. B. Yang and Y. L. Jiang, Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure, to appear in Int. J. Comput. Math. http://dx.doi.org/10.1080/00207160.2017.1294688.
  36. Y. B. Yang and Y. L. Jiang, Numerical analysis and computation of a type of IMEX method for the timedependent natural convection problem, Comput. Methods Appl. Math. 16 (2016), no. 2, 321-344. https://doi.org/10.1515/cmam-2016-0006
  37. Y. B. Yang and Y. L. Jiang, An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection, to appear in Numer. Algor. http://dx.doi.org/10.1007/s11075-017-0389-7.