참고문헌
- Ph. Angot, M. Jobelin, and J.-C. Latche, Error analysis of the penalty-projection method for the time dependent Stokes equations, Int. J. Finite Vol. 6 (2009), no. 1, 26 pp.
- M. Case, V. Ervin, A. Linke, and L. Rebholz, A connection between Scott-Vogelius elements and grad-div stabilization Taylor-Hood FE approximations of the Navier-Stokes equations, SIAM J. Numer. Anal. 49 (2011), no. 4, 1461-1481. https://doi.org/10.1137/100794250
- J. Chen, J. D. Lee, and C. Liang, Constitutive equations of Micropolar electromagnetic fluids, J Non-Newton Fluid. 166 (2011), no. 14, 867-874. https://doi.org/10.1016/j.jnnfm.2011.05.004
- A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- J. S. Dahler and L. E. Scriven, Angular momentum of continua, Nature. 192 (1961) 36-37. https://doi.org/10.1038/192036a0
- J. S. Dahler and L. E. Scriven, Theory of structured continua. I. General consideration of angular momentum and polarization, Proc. R. Soc. 275 (1963), no. 1363, 504-527. https://doi.org/10.1098/rspa.1963.0183
- B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations 249 (2010), no. 1, 200-213. https://doi.org/10.1016/j.jde.2010.03.016
- A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer-Verlag, New York, 1999.
- A. C. Eringen, Microcontinuum Field Theories. II. Fluent Media, Springer-Verlag, New York, 2001.
- G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci. 15 (1977), no. 2, 105-108. https://doi.org/10.1016/0020-7225(77)90025-8
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986.
- J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. https://doi.org/10.1016/j.cma.2005.10.010
- J. L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003), no. 1, 112-134. https://doi.org/10.1137/S0036142901395400
- J. L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys. 192 (2003), no. 1, 262-276. https://doi.org/10.1016/j.jcp.2003.07.009
- J. L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comp. 73 (2004), no. 248, 1719-1737. https://doi.org/10.1090/S0025-5718-03-01621-1
- F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251-265.
- J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353-384. https://doi.org/10.1137/0727022
- Y. L. Jiang and Y. B. Yang, Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model, to appear in Comput. Methods Appl. Math. https://doi.org/10.1515/cmam-2017-0021.
- M. Jobelin, C. Lapuerta, J. C. Latche, P. Angot, and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comput. Phys. 217 (2006), no. 2, 502-518. https://doi.org/10.1016/j.jcp.2006.01.019
- A. Linke, M. Neilan, L. Rebholz, and N. Wilson, A connection between coupled and penalty projection timestepping schemes with FE spacial discretization for the Navier-Stokes equations, preprint (2016), to appear in J. Numer. Math. DOI: 10.1515/jnma-2016-1024.
- G. Lukaszewicz, Micropolar Fluids, Modeling and Simulation in Science, Engineering and Technology, Birkhauser Boston, Inc., Boston, MA, 1999.
- E. Mallea-Zepeda, E. Ortega-Torres, and E. J. Villamizar-Roa, A boundary control problem for micropolar fluids, J. Optim. Theory Appl. 169 (2016), no. 2, 349-369. https://doi.org/10.1007/s10957-016-0925-y
- M. Marion and R. Temam, Navier-Stokes equations: theory and approximation, in Handbook of numerical analysis, Vol. VI, 503-688, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998.
- R. H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. I. The Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), no. 3, 1043-1068. https://doi.org/10.1137/040609756
- R. H. Nochetto, A. J. Salgado, and I. Tomas, The micropolar Navier-Stokes equations: a priori error analysis, Math. Models Methods Appl. Sci. 24 (2014), no. 7, 1237-1264. https://doi.org/10.1142/S0218202514500018
- R. H. Nochetto, A. J. Salgado, and I. Tomas, The equations of ferrohydrodynamics: modeling and numerical methods, Math. Models Methods Appl. Sci. 26 (2016), no. 13, 2393-2449. https://doi.org/10.1142/S0218202516500573
- E. Ortega-Torres and M. Rojas-Medar, Optimal error estimate of the penalty finite element method for the micropolar fluid equations, Numer. Funct. Anal. Optim. 29 (2008), no. 5-6, 612-637. https://doi.org/10.1080/01630560802099555
- A. J. Salgado, Convergence analysis of fractional time-stepping techniques for incompressible fluids with microstructure, J. Sci. Comput. 64 (2015), no. 1, 216-233. https://doi.org/10.1007/s10915-014-9926-x
- J. Shen, On error estimates of projection methods for Navier-Stokes equations: firstorder schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57-77. https://doi.org/10.1137/0729004
- J. Shen and X. Yang, Error estimates for finite element approximations of consistent splitting schemes for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 663-676. https://doi.org/10.3934/dcdsb.2007.8.663
- R. Stavre, The control of the pressure for a micropolar fluid, Z. Angew. Math. Phys. 53 (2002), no. 6, 912-922. https://doi.org/10.1007/PL00012619
- R. Temam, Une methode d'approximation de la solution des equations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115-152.
- R. Temam, Navier-Stokes Equations, Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984.
- J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 870-891. https://doi.org/10.1137/0907059
- Y. B. Yang and Y. L. Jiang, Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure, to appear in Int. J. Comput. Math. http://dx.doi.org/10.1080/00207160.2017.1294688.
- Y. B. Yang and Y. L. Jiang, Numerical analysis and computation of a type of IMEX method for the timedependent natural convection problem, Comput. Methods Appl. Math. 16 (2016), no. 2, 321-344. https://doi.org/10.1515/cmam-2016-0006
- Y. B. Yang and Y. L. Jiang, An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection, to appear in Numer. Algor. http://dx.doi.org/10.1007/s11075-017-0389-7.