DOI QR코드

DOI QR Code

SOME CONDITIONS ON THE FORM OF THIRD ELEMENT FROM DIOPHANTINE PAIRS AND ITS APPLICATION

  • Lee, June Bok (Department of Mathematical Sciences Yonsei University) ;
  • Park, Jinseo (Department of Mathematics Education Catholic Kwandong University)
  • Received : 2017.04.29
  • Accepted : 2017.06.19
  • Published : 2018.03.01

Abstract

A set {$a_1,\;a_2,{\ldots},\;a_m$} of positive integers is called a Diophantine m-tuple if $a_ia_j+1$ is a perfect square for all $1{\leq}i$ < $j{\leq}m$. In this paper, we show that the form of third element in Diophantine pairs and develop some results which are needed to prove the extendibility of the Diophantine pair {a, b} with some conditions. By using this result, we prove the extendibility of Diophantine pairs {$F_{k-2}F_{k+1},\;F_{k-1}F_{k+2}$} and {$F_{k-2}F_{k-1},\;F_{k+1}F_{k+2}$}, where $F_n$ is the n-th Fibonacci number.

Keywords

References

  1. A. Baker and H. Davenport, The equations $3^x-2=y^2$ and $8^x-7=z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. https://doi.org/10.1093/qmath/20.1.129
  2. A. Baker and G. Wustholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  3. Y. Bugeaud, A. Dujella, and M. Migonotte, On the family of Diophantine triples {k-1+1, $16k^3$-4k}, Glasg. Math. J. 49 (2007), no. 2, 333-344. https://doi.org/10.1017/S0017089507003564
  4. A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51, (1997), no. 3-4, 311-322.
  5. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94, (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
  6. A. Dujella, An absolute bound for the size of Diophantine m-tuple, J. Number theory 89 (2001), no. 1, 126-150. https://doi.org/10.1006/jnth.2000.2627
  7. A. Dujella, Diophantine m-tuples and elliptic curves, 21st Journees Arithmetiques (Rome, 2001), J. Theor. Nombres Bordeaux 13, (2001), no. 1, 111-124. https://doi.org/10.5802/jtnb.308
  8. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
  9. A. Dujella and A. Petho, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. https://doi.org/10.1093/qmathj/49.3.291
  10. A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III 49(69) (2014), no. 1, 25-36. https://doi.org/10.3336/gm.49.1.03
  11. A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs II: Examples, J. Number Theory 145 (2014), 604-631. https://doi.org/10.1016/j.jnt.2014.06.020
  12. Y. Fujita, The extensibility of Diophantine pair {k-1, k + 1}, J. Number Theory 128(2008), no. 2, 323-353.
  13. Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples ${F_{2k+1},F_{2k+3},F_{2k+5}}$ and integer points on the attached elliptic curves, Rocky Mountain J. Math. 39 (2009), no.6, 1907-1932 https://doi.org/10.1216/RMJ-2009-39-6-1907
  14. Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), no. 7, 1678-1697. https://doi.org/10.1016/j.jnt.2009.01.001
  15. B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), no. 2, 155-165.